950 resultados para PYRIDINE RINGS


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The title compound, [CdCl2(C6H7N3O)(2)], was obtained unintentionally as a product of an attempted reaction of CdCl2 center dot 2.5H(2)O and picolinic acid hydrazide, in order to obtain a cadmium(II) complex analogous to a 15-metallacrown-5 complex of the formula [MCu5L5]X-n, with M = a central metal ion, L = picolinic acid hydrazide and X = Cl- , but with cadmium the only metal present. The coordination geometry around the Cd-II atom can be considered as distorted octahedral, with two bidentate picolinic acid hydrazide ligands, each coordinating through their carbonyl O atom and amino N atom, and two chloride anions. In the crystal structure, intermolecular N-H center dot center dot center dot Cl and N-H center dot center dot center dot N hydrogen bonds link the molecules into a two-dimensional network parallel to the ( 100) plane. The pyridine rings of adjacent networks are involved in pi-pi stacking interactions, the minimum distance between the ring centroids being 3.693 (2) angstrom.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O trabalho descrito insere-se no âmbito da Química Supramolecular e consistiu no desenvolvimento de receptores artificiais, na forma protonada ou complexada, para o reconhecimento molecular de substratos aniónicos derivados de ácidos carboxílicos incluindo os herbicidas PMG2-, ATCP- e 2,4-D-. Foram investigadas duas séries de aniões, uma alifática (ox2-, mal2-, suc2-, glu2-, adip2-, cit3- e cta3-) e outra aromática (bzc-, naphc-, anthc-, pyrc-, ph2-, iph2-, tph2-, btc3-, dihyac2-, 4,4-dibzc2-, 3-nitrobzc- e 4-nitrobzc-). Foram sintetizados sete novos ligandos macrocíclicos simétricos constituídos por anéis aromáticos piridina ou fenantrolina ligados por cadeias de poliaminas saturadas. O comportamento ácido-base destes macrociclos foi investigado em solução aquosa e as constantes de protonação correspondentes determinadas por métodos potenciométricos e de RMN de 1H. As propriedades de complexação destes ligandos com os iões metálicos Ni2+, Cu2+, Zn2+, Cd2+ e Pb2+ foram também estudadas por métodos potenciométricos nas mesmas condições experimentais, tendo revelado que os macrociclos de dimensão média são capazes de acomodar um ou dois iões metálicos. O complexo dinuclear de Cu(II) derivado do macrociclo com dois grupos piridina foi utilizado como receptor de aniões carboxilato originando complexos ternários. Todos os complexos foram caracterizados em solução por espectroscopias de UV/vis/IVpróx e de RMN. As espécies paramagnéticas foram também caracterizadas por espectroscopia de RPE. A formação de espécies ternárias foi ainda investigada por espectrometria de massa ESI-MS e ESI-MS/MS. As estruturas cristalinas de alguns dos complexos foram determinadas por difracção de raios-X. As formas protonadas dos macrociclos foram utilizadas como receptores de uma grande variedade de aniões carboxilato. O reconhecimento molecular entre os receptores e os substratos aniónicos foi investigado em solução por métodos potenciométricos e de espectroscopia de RMN com determinação das constantes de associação. Os agregados supramoleculares foram caracterizados no estado sólido por difracção de raios-X. Finalmente as associações supramoleculares foram estudadas em solução por métodos de dinâmica molecular com determinação dos termos entrópicos e entálpicos das energias livres de ligação. Em resumo, nesta tese apresentam-se os resultados de estudos realizados com duas famílias de macrociclos: desde a síntese dos compostos, passando por estudos em solução e finalizando com simulação molecular. Este estudo sistemático através da conjugação de metodologias complementares permitiu caracterizar ao nível macroscópico e microscópico as associações moleculares.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Complexes have been synthesised with bis(2-pyridine carboxaldehyde) ethylenediimine (1) and bis(2-pyridine carboxaldehyde)propylene-1,3-diimine (2) with all of the available lanthanide trinitrates. Crystal structures were obtained for all but one complex with 1 and for all but one complex with 2. Four distinct structural types were established for 1 but only two for 2, although in all cases the structures contained one ligand bound to the metal in a tetradentate fashion. With 1, the four different structures of the lanthanide(III) nitrate complexes included 11-coordinate [Ln(1)(NO3)(3)(H2O)] for Ln = La; 10 coordinate [Ln(1)(NO3)(3)(H2O)] with one monodentate and two bidentate nitrates for Ln = Ce, then 10-coordinate [Ln(1)(NO3)(3)] for Ln = Pr-Yb with three bidentate nitrates; and 9-coordinate [Ln(1)(NO3)(3)] with one monodentate and two bidentate nitrates for Ln = Lu. On the other hand for 2 only two distinct types of structure are obtained, the first type with Ln = La-Pr and the second type for Ln = Sm-Lu, although all are 10-coordinate with stoichiometry [Ln(2)(NO3)(3)]. The difference between the two types is in the disposition of the ligand relative to the nitrates. With the larger lanthanides La-Pr the ligand is found on one side of the coordination sphere with the three nitrate anions on the other. In these structures, the ligand is folded such that the angle between the two pyridine rings approaches 90degrees, while with the smaller lanthanides Sm-Lu, two nitrates are found on one side of the ligand and one nitrate on the other and the ligand is in an extended conformation such that the two pyridine rings are close to being coplanar. In both series of structures, the Ln-N and Ln-O bond lengths were consistent with the lanthanide contraction though there are significant variations between ostensibly equivalent bonds which are indicative of intramolecular hydrogen bonding and steric crowding in the complexes. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Three new mononuclear complexes of nitrogen-sulfur donor sets, formulated as (Fe-II(L)Cl-2] (1), [Co-II(L)Cl-2] (2) and [Ni-II(L)Cl-2] (3) where L = 1,3-bis(2-pyridylmethylthio)propane, were synthesized and isolated in their pure form. All the complexes were characterized by physicochemical and spectroscopic methods. The solid state structures of complexes I and 3 have been established by single crystal X-ray crystallography. The structural analysis evidences isomorphous crystals with the metal ion in a distorted octahedral geometry that comprises NSSN ligand donors with trans located pyridine rings and chlorides in cis positions. In dimethylformamide solution, the complexes were found to exhibit Fe-II/Fe-III, co(II)/co(III) and Ni-II/Ni-III quasi-reversible redox couples in cyclic voltammograms with E-1/2 values (versus Ag/AgCl at 298 K) of +0.295, +0.795 and +0.745 V for 1, 2 and 3, respectively. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Four new 6,6′-bis(1,2,4-triazin-3-yl)-2,2′-bipyridine (BTBP) ligands, which contain either additional alkyl groups on the pyridine rings or seven-membered aliphatic rings attached to the triazine rings, have been synthesized, and the effects of the additional alkyl substitution in the 4- and 4′-positions of the pyridine rings on their extraction properties with LnIII and AnIII cations in simulated nuclear waste solutions have been studied. The speciation of ligand 13 with some trivalent lanthanide nitrates was elucidated by 1H NMR spectroscopic titrations and ESI-MS. Although 13 formed both 1:1 and 1:2 complexes with LaIII and YIII, only 1:2 complexes were observed with EuIII and CeIII. Quite unexpectedly, both alkyl-substituted ligands 12 and 13 showed lower solubilities in certain diluents than the unsubstituted ligand CyMe4-BTBP. Compared to CyMe4-BTBP, alkyl-substitution was found to decrease the rates of metal-ion extraction of the ligands in both 1-octanol and cyclohexanone. A highly efficient (DAm > 10) and selective (SFAm/Eu > 90) extraction was observed for 12 and 13 in cyclohexanone and for 13 in 1-octanol in the presence of a phase-transfer agent. The implications of these results for the design of improved extractants for radioactive waste treatment are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The scope of my research project is to produce and characterize new crystalline forms of organic compounds, focusing the attention on co-crystals and then transferring these notions on APIs to produce co-crystals of potential interest in the pharmaceutical field. In the first part of this work co-crystallization experiments were performed using as building blocks the family of aliphatic dicarboxylic acids HOOC-(CH2)n-COOH, with n= 2-8. This class of compounds has always been an object of study because it is characterized by an interesting phenomenon of alternation of melting points: the acids with an even number of carbon atoms show a melting point higher than those with an odd one. The acids were co-crystallized with four dipyridyl molecules (formed by two pyridine rings with a different number of bridging carbon atoms) through the formation of intermolecular interactions N•••(H)O. The bases used were: 4,4’-bipyridine (BPY), 1,2-bis(4-pyridyl)ethane (BPA), 1,2-(di-4-pyridyl)ethylene (BPE) and 1,2-bis(4-pyridyl)propane (BPP). The co-crystals obtained by solution synthesis were characterized by different solid-state techniques to determine the structure and to see how the melting points in co-crystals change. In the second part of this study we tried to obtain new crystal forms of compounds of pharmaceutical interest. The APIs studied are: O-desmethylvenlafaxine, Lidocaine, Nalidixic Acid and Sulfadiazine. Each API was subjected to Polymorph Screening and Salt/Co-crystal Screening experiments to identify new crystal forms characterized by different properties. In a typical Salt/Co-crystal Screening the sample was made to react with a co-former (solid or liquid) through different methods: crystallization by solution, grinding, kneading and solid-gas reactions. The new crystal forms obtained were characterized by different solid state techniques (X-ray single crystal diffraction, X-ray powder diffraction, Differential Scanning Calorimetry, Thermogravimetric Analysis, Evolved gas analysis, FT-IR – ATR, Solid State N.M.R).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In difference to compact objects of a similar size, toroidal structures have some distinguishing properties that originate from their open inner cavity and closed circuit. Here, a general facile methodology is developed to prepare composite rings with varied compositions on a large scale by using core-shell toroids assembled from tri-block copolymers of poly(4-vinyl pyridine) (PVP)/polystyrene (PS)/PVP. Taking advantage of the complexation ability of the PVP shell, varied components that range from polymers, inorganic materials, metals and their compounds, as well as pre-formed nanoparticles are introduced to the toroidal structures to form composite nanostructures. Metal ions can be adsorbed by PVP through complexation. After in situ reduction, a large number of metal-based functional materials can be prepared. PVP is alkaline, and thus capable of catalyzing the sol-gel process to generate an inorganic shell. Furthermore, pre-formed nanoparticles can also be absorbed by the shell through specific interactions. The PS core is not infiltrative during synthesis, and hollow rings can be derived after the polymer templates are removed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Toluene dioxygenase-catalyzed dihydroxylation, in the carbocyclic rings of quinoline, 2-chloroquinoline, 2-methoxyquinoline, and 3-bromoquinoline, was found to yield the corresponding enantiopure cis-5,6- and -7,8-dihydrodiol metabolites using whole cells of Pseudomonas putida UV4. cis-Dihydroxylation at the 3,4-bond of 2-chloroquinoline, 2-methoxyquinoline, and 2-quinolone was also found to yield the heterocyclic cis-dihydrodiol metabolite, (+)-cis-(3S,4S)-3,4-dihydroxy-3,4-dihydro-2-quinolone. Heterocyclic cis-dihydrodiol metabolites, resulting from dihydroxylation at the 5,6- and 3,4-bonds of 1-methyl 2-pyridone, were isolated from bacteria containing toluene, naphthalene, and biphenyl dioxygenases. The enantiomeric excess (ee) values (>98%) and the absolute configurations of the carbocyclic cis-dihydrodiol metabolites of quinoline substrates (benzylic R) and of the heterocyclic cis-diols from quinoline, 2-quinolone, and 2-pyridone substrates (allylic S) were found to be in accord with earlier models for dioxygenase-catalyzed cis-dihydroxylation of carbocyclic arenes. Evidence favouring the dioxygenase-catalyzed cis-dihydroxylation of pyridine-ring systems is presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The title compound, C11H9N3O2, exists in the E conformation with respect to the azomethane C N bond, and has the keto form. There are two independent molecules in the asymmetric unit and each of these features a slight slanting of the pyridine and furan rings, which form a dihedral angle of 14.96 (10) in one of the molecules and 5.53 (10) in the other. The crystal structure is stabilized by N—H O and N—H N hydrogen bonds, weak C—H O and C—H N hydrogen bonds and C—H interactions and – interactions [shortest centroid–centroid distance = 3.7864 (15) A ° ].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the structure of title compound [ZnI2(C12H10N2O2)2] from the reaction of 4-(4-nitrobenzyl)pyridine with zinc(II) iodide, the asymmetric unit contains two independent discrete distorted tetrahedral complex units [Zn-I range, 2.5472(8)-2.5666(7)A; Zn-N range, 2.044(4)-2.052(4)A], which are essentially identical conformationally and exist in the crystal structure as a racemic twin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the title compound, [Li(C14H36N2PSi2)(C5H5N)2], the bulky chelating monoanionic P,P-di-tert-butyl-N-trimethylsilyl-P-(trimethylsilylamino)phosphine imidate ligand and two pyridine ligands bind to Li in a pseudo-tetrahedral arrangement with twofold symmetry. The Li-N [phosphine]distance is 2.048 (5) Å, while the LiP distance is 2.520 (6) Å

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that SiGe islands are transformed into nanoholes and rings by annealing treatments only and without Si capping. Rings are produced by a rapid flash heating at temperatures higher than the melting point of Ge, whereas nanoholes are produced by several minute annealing. The rings are markedly rich in Si with respect to the pristine islands, suggesting that the evolution path from islands to rings is driven by the selective dissolution of Ge occurring at high temperature.