997 resultados para Operator theory
Resumo:
We establish existence of mild solutions for a class of abstract second-order partial neutral functional differential equations with unbounded delay in a Banach space.
Resumo:
In this paper we develop an appropriate theory of positive definite functions on the complex plane from first principles and show some consequences of positive definiteness for meromorphic functions.
Resumo:
[cat] Es presenta un estimador nucli transformat que és adequat per a distribucions de cua pesada. Utilitzant una transformació basada en la distribució de probabilitat Beta l’elecció del paràmetre de finestra és molt directa. Es presenta una aplicació a dades d’assegurances i es mostra com calcular el Valor en Risc.
Resumo:
[spa] El índice del máximo y el mínimo nivel es una técnica muy útil, especialmente para toma de decisiones, que usa la distancia de Hamming y el coeficiente de adecuación en el mismo problema. En este trabajo, se propone una generalización a través de utilizar medias generalizadas y cuasi aritméticas. A estos operadores de agregación, se les denominará el índice del máximo y el mínimo nivel medio ponderado ordenado generalizado (GOWAIMAM) y cuasi aritmético (Quasi-OWAIMAM). Estos nuevos operadores generalizan una amplia gama de casos particulares como el índice del máximo y el mínimo nivel generalizado (GIMAM), el OWAIMAM, y otros. También se desarrolla una aplicación en la toma de decisiones sobre selección de productos.
Resumo:
[cat] Es presenta un estimador nucli transformat que és adequat per a distribucions de cua pesada. Utilitzant una transformació basada en la distribució de probabilitat Beta l’elecció del paràmetre de finestra és molt directa. Es presenta una aplicació a dades d’assegurances i es mostra com calcular el Valor en Risc.
Resumo:
[spa] El índice del máximo y el mínimo nivel es una técnica muy útil, especialmente para toma de decisiones, que usa la distancia de Hamming y el coeficiente de adecuación en el mismo problema. En este trabajo, se propone una generalización a través de utilizar medias generalizadas y cuasi aritméticas. A estos operadores de agregación, se les denominará el índice del máximo y el mínimo nivel medio ponderado ordenado generalizado (GOWAIMAM) y cuasi aritmético (Quasi-OWAIMAM). Estos nuevos operadores generalizan una amplia gama de casos particulares como el índice del máximo y el mínimo nivel generalizado (GIMAM), el OWAIMAM, y otros. También se desarrolla una aplicación en la toma de decisiones sobre selección de productos.
Resumo:
We analyse the use of the ordered weighted average (OWA) in decision-making giving special attention to business and economic decision-making problems. We present several aggregation techniques that are very useful for decision-making such as the Hamming distance, the adequacy coefficient and the index of maximum and minimum level. We suggest a new approach by using immediate weights, that is, by using the weighted average and the OWA operator in the same formulation. We further generalize them by using generalized and quasi-arithmetic means. We also analyse the applicability of the OWA operator in business and economics and we see that we can use it instead of the weighted average. We end the paper with an application in a business multi-person decision-making problem regarding production management
Resumo:
We analyse the use of the ordered weighted average (OWA) in decision-making giving special attention to business and economic decision-making problems. We present several aggregation techniques that are very useful for decision-making such as the Hamming distance, the adequacy coefficient and the index of maximum and minimum level. We suggest a new approach by using immediate weights, that is, by using the weighted average and the OWA operator in the same formulation. We further generalize them by using generalized and quasi-arithmetic means. We also analyse the applicability of the OWA operator in business and economics and we see that we can use it instead of the weighted average. We end the paper with an application in a business multi-person decision-making problem regarding production management
Resumo:
Maschler et al. (1979) caracteritzen geomètricament la intersecció del kernel i del core en els jocs cooperatius, demostrant que les distribucions que pertanyen a ambdós conjunts es troben en el punt mig d’un cert rang de negociació entre parelles de jugadors. En el cas dels jocs d’assignació, aquesta caracterització vol dir que el kernel només conté aquells elements del core on el màxim que un jugador pot transferir a una parella òptima és igual al màxim que aquesta parella li pot transferir, sense sortir-se’n del core. En aquest treball demostrem que el nucleolus d’un joc d’assignació queda caracteritzat si requerim que aquesta propietat de bisecció es compleixi no només per parelles, sinó també per coalicions entre sectors aparellades òptimament.
Resumo:
Maschler et al. (1979) caracteritzen geomètricament la intersecció del kernel i del core en els jocs cooperatius, demostrant que les distribucions que pertanyen a ambdós conjunts es troben en el punt mig d’un cert rang de negociació entre parelles de jugadors. En el cas dels jocs d’assignació, aquesta caracterització vol dir que el kernel només conté aquells elements del core on el màxim que un jugador pot transferir a una parella òptima és igual al màxim que aquesta parella li pot transferir, sense sortir-se’n del core. En aquest treball demostrem que el nucleolus d’un joc d’assignació queda caracteritzat si requerim que aquesta propietat de bisecció es compleixi no només per parelles, sinó també per coalicions entre sectors aparellades òptimament.
Resumo:
Ordered weighted averaging (OWA) operators and their extensions are powerful tools used in numerous decision-making problems. This class of operator belongs to a more general family of aggregation operators, understood as discrete Choquet integrals. Aggregation operators are usually characterized by indicators. In this article four indicators usually associated with the OWA operator are extended to discrete Choquet integrals: namely, the degree of balance, the divergence, the variance indicator and Renyi entropies. All of these indicators are considered from a local and a global perspective. Linearity of indicators for linear combinations of capacities is investigated and, to illustrate the application of results, indicators of the probabilistic ordered weighted averaging -POWA- operator are derived. Finally, an example is provided to show the application to a specific context.
Resumo:
Distortion risk measures summarize the risk of a loss distribution by means of a single value. In fuzzy systems, the Ordered Weighted Averaging (OWA) and Weighted Ordered Weighted Averaging (WOWA) operators are used to aggregate a large number of fuzzy rules into a single value. We show that these concepts can be derived from the Choquet integral, and then the mathematical relationship between distortion risk measures and the OWA and WOWA operators for discrete and finite random variables is presented. This connection offers a new interpretation of distortion risk measures and, in particular, Value-at-Risk and Tail Value-at-Risk can be understood from an aggregation operator perspective. The theoretical results are illustrated in an example and the degree of orness concept is discussed.
Resumo:
By theorems of Ferguson and Lacey ($d=2$) and Lacey and Terwilleger ($d>2$), Nehari's theorem is known to hold on the polydisc $\D^d$ for $d>1$, i.e., if $H_\psi$ is a bounded Hankel form on $H^2(\D^d)$ with analytic symbol $\psi$, then there is a function $\varphi$ in $L^\infty(\T^d)$ such that $\psi$ is the Riesz projection of $\varphi$. A method proposed in Helson's last paper is used to show that the constant $C_d$ in the estimate $\|\varphi\|_\infty\le C_d \|H_\psi\|$ grows at least exponentially with $d$; it follows that there is no analogue of Nehari's theorem on the infinite-dimensional polydisc.
Resumo:
We introduce a new notion for the deformation of Gabor systems. Such deformations are in general nonlinear and, in particular, include the standard jitter error and linear deformations of phase space. With this new notion we prove a strong deformation result for Gabor frames and Gabor Riesz sequences that covers the known perturbation and deformation results. Our proof of the deformation theorem requires a new characterization of Gabor frames and Gabor Riesz sequences. It is in the style of Beurling's characterization of sets of sampling for bandlimited functions and extends significantly the known characterization of Gabor frames 'without inequalities' from lattices to non-uniform sets.