966 resultados para Open circuit potentiometry
Resumo:
Limitations on the open-circuit voltage of p-ZnTe/n-ZnSe heterojunction solar cells are studied via current-voltage (I-V) measurements under solar concentration and at variable temperature. The open-circuit voltage reaches a maximum value of 1.95 V at 77 K and 199 suns. The open-circuit voltage shows good agreement with the calculated built-in potential of 2.00 V at 77 K. These results suggest that the open-circuit voltage is limited by heterojunction band offsets associated with the type-II heterojunction band lineup, rather than the bandgap energy of the ZnTe absorber material.
Resumo:
A procedure for measuring the overheating temperature (ΔT ) of a p-n junction area in the structure of photovoltaic (PV) cells converting laser or solar radiations relative to the ambient temperature has been proposed for the conditions of connecting to an electric load. The basis of the procedure is the measurement of the open-circuit voltage (VO C ) during the initial time period after the fast disconnection of the external resistive load. The simultaneous temperature control on an external heated part of a PV module gives the means for determining the value of VO C at ambient temperature. Comparing it with that measured after switching OFF the load makes the calculation of ΔT possible. Calibration data on the VO C = f(T ) dependences for single-junction AlGaAs/GaAs and triple-junction InGaP/GaAs/Ge PV cells are presented. The temperature dynamics in the PV cells has been determined under flash illumination and during fast commutation of the load. Temperature measurements were taken in two cases: converting continuous laser power by single-junction cells and converting solar power by triple-junction cells operating in the concentrator modules.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Reliability of power converters is of crucial importance in switched reluctance motor drives used for safety-critical applications. Open-circuit faults in power converters will cause the motor to run in unbalanced states, and if left untreated, they will lead to damage to the motor and power modules, and even cause a catastrophic failure of the whole drive system. This study is focused on using a single current sensor to detect open-circuit faults accurately. An asymmetrical half-bridge converter is considered in this study and the faults of single-phase open and two-phase open are analysed. Three different bus positions are defined. On the basis of a fast Fourier transform algorithm with Blackman window interpolation, the bus current spectrums before and after open-circuit faults are analysed in details. Their fault characteristics are extracted accurately by the normalisations of the phase fundamental frequency component and double phase fundamental frequency component, and the fault characteristics of the three bus detection schemes are also compared. The open-circuit faults can be located by finding the relationship between the bus current and rotor position. The effectiveness of the proposed diagnosis method is validated by the simulation results and experimental tests.
Resumo:
The electrochemical behavior of Nd3+ and Ho3+ ions on molybdenum electrode in the LiCl-KCl eutectic melts has been studied by cyclic voltammetry and open-circuit potentiometry. The results show that the reduction process of Nd3+ and Ho3+ ions on molybdenum electrode is one-step three electron reversible reaction. The diffusion coefficients of Nd3+ and Ho3+ ions are 1.13 x 10(-6) cm(2).s(-1)(450 degrees C) and 2.142 x 10(-5) cm(2).s(-1)(450 degrees C), respectively. The measured standard electrode potential of Ho3+/Ho is 2.987 V(vs. Cl/Cl-), being more negative than the theoretical one, the reason of which is also discussed.
Resumo:
The electrochemical reduction of yttrium ion on a molybdenum electrode in a LiCl-KCl-NaCl eutectic melt at 723 K was found to be almost reversible and to proceed by a one-step three electron reaction. The diffusion coefficient D of the Y(III) ion was measured to be (3.3 +/- 0.4) x 10(-6) cm2 s-1 by cyclic voltammetry, (5.0 +/- 0.9) x 10(-6) cm2 s-1 by the rotating disk electrode method, and (7.1 +/- 0.7) x 10(-6) cm2 s-1 by chronopotentiometry. The D values obtained by the latter two methods are in fairly good agreement with each other. The rather low D value obtained by cyclic voltammetry might be attributed to the fact that yttrium metal can dissolve slightly in the chloride melt. The standard potential of Y(III)/Y(0) couple was determined to be (-3.174 +/- 0.006) V (vs. Cl2/Cl-) by open-circuit potentiometry, (-3.15 +/- 0.02) V (vs. Cl2/Cl-) by the rotating disk electrode method and (-3.16 +/- 0.02) V (vs. Cl2/Cl) by chronopotentiometry. These three values are in good agreement with each other. Several types of Ni-Y intermetallic compounds were found to be formed on a nickel electrode.
Resumo:
Results are presented on the mechanism of passivation of Co-Cr-Mo biological implant alloys in physiological serum using open circuit potentiometry, potentiodynamic curves, and electrochemical impedance spectroscopy. The potential dependence of impedance data and the analysis of the parameters obtained indicate a progressive diminution of the initial layer thickness and the simultaneous formation of a second higher resistive layer. In more severe conditions than the existent in human body, the metallographic examination of the alloy surface shows localized corrosion in interdendritric regions. Elemental analysis of the surface reveals the presence of higher chromium content in these regions. The presence of chlorine was not detected, which suggested that during preferential attack, soluble species are also formed.
Resumo:
This paper presents studies on the use of carbon nanotubes dispersed in an insulating fluid to serve as an automaton for healing open-circuit interconnect faults in integrated circuits. The physics behind the repair mechanism is the electric-field-induced diffusion limited aggregation. On the occurrence of an open fault, the repair is automatically triggered due to the presence of an electric field across the gap. We perform studies on the repair time as a function of the electric field and dispersion concentrations with the above application in mind.
Resumo:
Multiple breath wash-out (MBW) testing requires prior wash-in of inert tracer gas. Wash-in efficiency can be enhanced by a rebreathing tracer in a closed circuit. Previous attempts to deploy this did not account for the impact of CO2 accumulation on patients and were unsuccessful. We hypothesised that an effective rebreathe wash-in could be delivered and it would not alter wash-out parameters. Computer modelling was used to assess the impact of the rebreathe method on wash-in efficiency. Clinical testing of open and closed circuit wash-in–wash-out was performed in healthy controls and adult patients with cystic fibrosis (CF) using a circuit with an effective CO2 scrubber and a refined wash-in protocol. Wash-in efficiency was enhanced by rebreathing. There was no difference in mean lung clearance index between the two wash-in methods for controls (6.5 versus 6.4; p=0.2, n=12) or patients with CF (10.9 versus 10.8; p=0.2, n=19). Test time was reduced by rebreathe wash-in (156 versus 230 s for CF patients, p<0.001) and both methods were well tolerated. End wash-in CO2 was maintained below 2% in most cases. Rebreathe–wash-in is a promising development that, when correctly deployed, reduces wash-in time and facilitates portable MBW testing. For mild CF, wash-out outcomes are equivalent to an open circuit.
Resumo:
Free fatty acids (FFA) are important mediators of proton transport across membranes. However, information concerning the influence of the Structural features of both FFA and the membrane environment on the proton translocation mechanisms across phospholipid membranes is relatively scant. The effects of FFA chain length, unsaturation and membrane composition on proton transport have been addressed in this study by means of electrical measurements in planar lipid bilayers. Proton conductance (G(H)(+)) was calculated from open-circuit voltage and short-circuit current density measurements. We found that cis-unsaturated FFA caused a more pronounced effect on proton transport as compared to Saturated and trans-unsaturated FFA. Cholesterol and cardiolipin decreased membrane leak conductance. Cardiolipin also decreased proton conductance. These effects indicate a dual modulation of protein-independent proton transport by FFA: through a flip-flop mechanism and by modifying a proton diffusional pathway. Moreover the membrane phospholipid composition was shown to importantly affect both processes. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
New composite doped poly (ethylene oxide) polymer electrolyte was developed using 2-mercapto benzimidazole as plasticizer and iodide/triiodide as redox couple. The fabrication of the cell involves Poly(ethylene oxide)/ 2-mercapto benzimidazole / iodide/triiodide as polymer electrolyte in dye-sensitized solar cell fabricated with N3 dye and TiO2 nanoparticles as the photoanode and Platinum coated FTO (fluorine doped SnO2) as counter electrode. The current-volatage characteristics under simulated sunlight AM1.5 shows a short circuit current Isc of 8.7mA and open circuit photovoltage 508 mV. The conductivity measurements for the new polymer electrolyte and the photoelectrochemical measurments were carried out systematically. In 2-mercapto benzimidazole the electron rich sulphur and nitrogen atoms, act as pi-electron donors that form good interaction with iodine which plays a vital role in the performance of the fabricated dye-sensitized solar cells. The resonance effect increases the stability of the cell to a considerable extent. These results suggest that the new composite polymer electrolyte performs as a promising new doped polymer-electrolyte.
Resumo:
In situ near-IR transmittance measurements have been used to characterize the density of trapped electrons in dye-sensitized solar cells (DSCs). Measurements have been made under a range experimental conditions including during open circuit photovoltage decay and during recording of the IV characteristic. The optical cross section of electrons at 940 nm was determined by relating the IR absorbance to the density of trapped electrons measured by charge extraction. The value, σn = 5.4 × 10-18 cm2, was used to compare the trapped electron densities in illuminated DSCs under open and short circuit conditions in order to quantify the difference in the quasi Fermi level, nEF. It was found that nEF for the cells studied was 250 meV over wide range of illuminat on intensities. IR transmittance measurements have also been used to quantify shifts in conduction band energy associated with dye adsorption.
Resumo:
A new steady state method for determination of the electron diffusion length in dye-sensitized solar cells (DSCs) is described and illustrated with data obtained using cells containing three different types of electrolyte. The method is based on using near-IR absorbance methods to establish pairs of illumination intensity for which the total number of trapped electrons is the same at open circuit (where all electrons are lost by interfacial electron transfer) as at short circuit (where the majority of electrons are collected at the contact). Electron diffusion length values obtained by this method are compared with values derived by intensity modulated methods and by impedance measurements under illumination. The results indicate that the values of electron diffusion length derived from the steady state measurements are consistently lower than the values obtained by the non steady-state methods. For all three electrolytes used in the study, the electron diffusion length was sufficiently high to guarantee electron collection efficiencies greater than 90%. Measurement of the trap distributions by near-IR absorption confirmed earlier observations of much higher electron trap densities for electrolytes containing Li+ ions. It is suggested that the electron trap distributions may not be intrinsic properties of the TiO2 nanoparticles, but may be associated with electron-ion interactions.
Resumo:
The performance and electron recombination kinetics of dye-sensitized solar cells based on TiO2 films consisting of one-dimensional nanorod arrays (NR-DSSCs) which are sensitized with dye N719, C218 and D205 respectively have been studied. It has been found that the best efficiency is obtained with the dye C218 based NR-DSSCs, benefiting from a 40% higher short-circuit photocurrent density. However, the open circuit photovoltage of the N719 based cell is 40 mV higher than that of the organic dye C218 and D205 based devices. Investigation of the electron recombination kinetics of the NR-DSSCs has revealed that the effective electron lifetime, τn, of the N719 based NR-DSSC is the lowest whereas the τn of the C218 based NR-DSSC is the highest among the three dyes. The higher Voc with the N719 based NR-DSSC is originated from the more negative energy level of the conduction band of the TiO2 film. In addition, in comparison to the DSSCs with conventional nanocrystalline particles based TiO2 films, the NR-DSSCs have shown over two orders of magnitude higher τn when employing N719 as the sensitizer. Nevertheless, the τn of the DSSCs with the C218 based nanorod arrays is only ten-fold higher than the that of the nanoparticles based devices. The remarkable characteristic of the dye C218 in suppressing the electron recombination of DSSCs is discussed.