Closed circuit rebreathing to achieve inert gas wash-in for multiple breath wash-out
Data(s) |
09/02/2016
|
---|---|
Resumo |
Multiple breath wash-out (MBW) testing requires prior wash-in of inert tracer gas. Wash-in efficiency can be enhanced by a rebreathing tracer in a closed circuit. Previous attempts to deploy this did not account for the impact of CO2 accumulation on patients and were unsuccessful. We hypothesised that an effective rebreathe wash-in could be delivered and it would not alter wash-out parameters. Computer modelling was used to assess the impact of the rebreathe method on wash-in efficiency. Clinical testing of open and closed circuit wash-in–wash-out was performed in healthy controls and adult patients with cystic fibrosis (CF) using a circuit with an effective CO2 scrubber and a refined wash-in protocol. Wash-in efficiency was enhanced by rebreathing. There was no difference in mean lung clearance index between the two wash-in methods for controls (6.5 versus 6.4; p=0.2, n=12) or patients with CF (10.9 versus 10.8; p=0.2, n=19). Test time was reduced by rebreathe wash-in (156 versus 230 s for CF patients, p<0.001) and both methods were well tolerated. End wash-in CO2 was maintained below 2% in most cases. Rebreathe–wash-in is a promising development that, when correctly deployed, reduces wash-in time and facilitates portable MBW testing. For mild CF, wash-out outcomes are equivalent to an open circuit. |
Formato |
application/pdf |
Identificador |
http://dx.doi.org/10.1183/23120541.00042-2015 http://pure.qub.ac.uk/ws/files/18316975/Closed_circuit_rebreathing_to_achieve.pdf |
Idioma(s) |
eng |
Direitos |
info:eu-repo/semantics/openAccess |
Fonte |
Horsley , A R , O'Neill , K , Downey , D G , Elborn , J S , Bell , N J , Smith , J & Owers-Bradley , J 2016 , ' Closed circuit rebreathing to achieve inert gas wash-in for multiple breath wash-out ' ERJ Open , vol 2 , no. 1 . DOI: 10.1183/23120541.00042-2015 |
Tipo |
article |