294 resultados para Monotone splines
Resumo:
We had previously shown that regularization principles lead to approximation schemes, as Radial Basis Functions, which are equivalent to networks with one layer of hidden units, called Regularization Networks. In this paper we show that regularization networks encompass a much broader range of approximation schemes, including many of the popular general additive models, Breiman's hinge functions and some forms of Projection Pursuit Regression. In the probabilistic interpretation of regularization, the different classes of basis functions correspond to different classes of prior probabilities on the approximating function spaces, and therefore to different types of smoothness assumptions. In the final part of the paper, we also show a relation between activation functions of the Gaussian and sigmoidal type.
Resumo:
This work is concerned with the existence of monotone positive solutions for a class of beam equations with nonlinear boundary conditions. The results are obtained by using the monotone iteration method and they extend early works on beams with null boundary conditions. Numerical simulations are also presented. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The goal of this paper is to show the possibility of a non-monotone relation between coverage ans risk which has been considered in the literature of insurance models since the work of Rothschild and Stiglitz (1976). We present an insurance model where the insured agents have heterogeneity in risk aversion and in lenience (a prevention cost parameter). Risk aversion is described by a continuous parameter which is correlated with lenience and for the sake of simplicity, we assume perfect correlation. In the case of positive correlation, the more risk averse agent has higher cosr of prevention leading to a higher demand for coverage. Equivalently, the single crossing property (SCP) is valid and iplies a positive correlation between overage and risk in equilibrium. On the other hand, if the correlation between risk aversion and lenience is negative, not only may the SCP be broken, but also the monotonocity of contracts, i.e., the prediction that high (low) risk averse types choose full (partial) insurance. In both cases riskiness is monotonic in risk aversion, but in the last case there are some coverage levels associated with two different risks (low and high), which implies that the ex-ante (with respect to the risk aversion distribution) correlation between coverage and riskiness may have every sign (even though the ex-post correlation is always positive). Moreover, using another instrument (a proxy for riskiness), we give a testable implication to desentangle single crossing ans non single croosing under an ex-post zero correlation result: the monotonicity of coverage as a function os riskiness. Since by controlling for risk aversion (no asymmetric information), coverage is monotone function of riskiness, this also fives a test for asymmetric information. Finally, we relate this theoretical results to empirical tests in the recent literature, specially the Dionne, Gouruéroux and Vanasse (2001) work. In particular, they found an empirical evidence that seems to be compatible with asymmetric information and non single crossing in our framework. More generally, we build a hidden information model showing how omitted variables (asymmetric information) can bias the sign of the correlation of equilibrium variables conditioning on all observable variables. We show that this may be the case when the omitted variables have a non-monotonic relation with the observable ones. Moreover, because this non-dimensional does not capture this deature. Hence, our main results is to point out the importance of the SPC in testing predictions of the hidden information models.
Resumo:
The goal of t.his paper is to show the possibility of a non-monot.one relation between coverage and risk which has been considered in the literature of insurance models since the work of Rothschild and Stiglitz (1976). We present an insurance model where the insured agents have heterogeneity in risk aversion and in lenience (a prevention cost parameter). Risk aversion is described by a continuou.'l parameter which is correlated with lenience and, for the sake of simplicity, we assume perfect correlation. In the case of positive correlation, the more risk averse agent has higher cost of prevention leading to a higher demand for coverage. Equivalently, the single crossing property (SCP) is valid and implies a positive correlation between coverage and risk in equilibrium. On the other hand, if the correlation between risk aversion and lenience is negative, not only may the sep be broken, but also the monotonicity of contracts, i.e., the prediction that high (Iow) risk averse types choose full (partial) insurance. In both cases riskiness is monotonic in risk aversion, but in the last case t,here are some coverage leveIs associated with two different risks (low and high), which implies that the ex-ante (with respect to the risk aversion distribution) correlation bet,ween coverage and riskiness may have every sign (even though the ex-post correlation is always positive). Moreover, using another instrument (a proxy for riskiness), we give a testable implication to disentangle single crossing and non single crossing under an ex-post zero correlation result: the monotonicity of coverage as a function of riskiness. Since by controlling for risk aversion (no asymmetric informat, ion), coverage is a monotone function of riskiness, this also gives a test for asymmetric information. Finally, we relate this theoretical results to empirica! tests in the recent literature, specially the Dionne, Gouriéroux and Vanasse (2001) work. In particular, they found an empirical evidence that seems to be compatible with asymmetric information and non single crossing in our framework. More generally, we build a hidden information model showing how omitted variabIes (asymmetric information) can bias the sign of the correlation of equilibrium variabIes conditioning on ali observabIe variabIes. We show that this may be t,he case when the omitted variabIes have a non-monotonic reIation with t,he observable ones. Moreover, because this non-monotonic reIat,ion is deepIy reIated with the failure of the SCP in one-dimensional screening problems, the existing lit.erature on asymmetric information does not capture t,his feature. Hence, our main result is to point Out the importance of t,he SCP in testing predictions of the hidden information models.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This work proposes a computational methodology to solve problems of optimization in structural design. The application develops, implements and integrates methods for structural analysis, geometric modeling, design sensitivity analysis and optimization. So, the optimum design problem is particularized for plane stress case, with the objective to minimize the structural mass subject to a stress criterion. Notice that, these constraints must be evaluated at a series of discrete points, whose distribution should be dense enough in order to minimize the chance of any significant constraint violation between specified points. Therefore, the local stress constraints are transformed into a global stress measure reducing the computational cost in deriving the optimal shape design. The problem is approximated by Finite Element Method using Lagrangian triangular elements with six nodes, and use a automatic mesh generation with a mesh quality criterion of geometric element. The geometric modeling, i.e., the contour is defined by parametric curves of type B-splines, these curves hold suitable characteristics to implement the Shape Optimization Method, that uses the key points like design variables to determine the solution of minimum problem. A reliable tool for design sensitivity analysis is a prerequisite for performing interactive structural design, synthesis and optimization. General expressions for design sensitivity analysis are derived with respect to key points of B-splines. The method of design sensitivity analysis used is the adjoin approach and the analytical method. The formulation of the optimization problem applies the Augmented Lagrangian Method, which convert an optimization problem constrained problem in an unconstrained. The solution of the Augmented Lagrangian function is achieved by determining the analysis of sensitivity. Therefore, the optimization problem reduces to the solution of a sequence of problems with lateral limits constraints, which is solved by the Memoryless Quasi-Newton Method It is demonstrated by several examples that this new approach of analytical design sensitivity analysis of integrated shape design optimization with a global stress criterion purpose is computationally efficient
Resumo:
Systematic errors can have a significant effect on GPS observable. In medium and long baselines the major systematic error source are the ionosphere and troposphere refraction and the GPS satellites orbit errors. But, in short baselines, the multipath is more relevant. These errors degrade the accuracy of the positioning accomplished by GPS. So, this is a critical problem for high precision GPS positioning applications. Recently, a method has been suggested to mitigate these errors: the semiparametric model and the penalised least squares technique. It uses a natural cubic spline to model the errors as a function which varies smoothly in time. The systematic errors functions, ambiguities and station coordinates, are estimated simultaneously. As a result, the ambiguities and the station coordinates are estimated with better reliability and accuracy than the conventional least square method.
Resumo:
Studies investigating the use of random regression models for genetic evaluation of milk production in Zebu cattle are scarce. In this study, 59,744 test-day milk yield records from 7,810 first lactations of purebred dairy Gyr (Bos indicus) and crossbred (dairy Gyr × Holstein) cows were used to compare random regression models in which additive genetic and permanent environmental effects were modeled using orthogonal Legendre polynomials or linear spline functions. Residual variances were modeled considering 1, 5, or 10 classes of days in milk. Five classes fitted the changes in residual variances over the lactation adequately and were used for model comparison. The model that fitted linear spline functions with 6 knots provided the lowest sum of residual variances across lactation. On the other hand, according to the deviance information criterion (DIC) and Bayesian information criterion (BIC), a model using third-order and fourth-order Legendre polynomials for additive genetic and permanent environmental effects, respectively, provided the best fit. However, the high rank correlation (0.998) between this model and that applying third-order Legendre polynomials for additive genetic and permanent environmental effects, indicates that, in practice, the same bulls would be selected by both models. The last model, which is less parameterized, is a parsimonious option for fitting dairy Gyr breed test-day milk yield records. © 2013 American Dairy Science Association.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Several countries have been passed by change processes in their fundamental geodesic structure with the focus on the adoption of geocentric reference systems. In Brazil, the adoption of the SIRGAS2000 evolves the coexistence of two realizations from the COrrego Alegre system, two realizations from the SAD69 system and one realization from the SIRGAS2000 system. To make use of products in the old reference systems, methods of coordinate transformation between the existent reference frames are necessary. So, in this paper one solution for the transformation between coordinates from different reference frames, based on Thin-Plate Splines (TPS), that allows the estimation of parameters from one linear transformation and also one non-linear model is presented. The TPS model was developed to work with tridimensional coordinates and in this paper the results and analysis are performed with simulated data and also with data from the official Brazilian Geodetic System (SGB). In the check points from SAD69 stations (realization of 1996 - SAD69/96), the values of RMSE obtained were of 78,2 mm in latitude and 67,5 mm in longitude, before the transformation to the SIRGAS2000. In the comparison between the TPS model and ProGriD (Brazilian software provided by IBGE), the statistical indicators were reduced in 97%, by using the TPS model. Based in the obtained results from real dataset, the TPS model appears to be promising, since it allows improving the quality of transformation process with simultaneous distortion modeling.
Resumo:
The objective of this paper is to model variations in test-day milk yields of first lactations of Holstein cows by RR using B-spline functions and Bayesian inference in order to fit adequate and parsimonious models for the estimation of genetic parameters. They used 152,145 test day milk yield records from 7317 first lactations of Holstein cows. The model established in this study was additive, permanent environmental and residual random effects. In addition, contemporary group and linear and quadratic effects of the age of cow at calving were included as fixed effects. Authors modeled the average lactation curve of the population with a fourth-order orthogonal Legendre polynomial. They concluded that a cubic B-spline with seven random regression coefficients for both the additive genetic and permanent environment effects was to be the best according to residual mean square and residual variance estimates. Moreover they urged a lower order model (quadratic B-spline with seven random regression coefficients for both random effects) could be adopted because it yielded practically the same genetic parameter estimates with parsimony. (C) 2012 Elsevier B.V. All rights reserved.