131 resultados para Micropropagation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the research was to study the effects of exogenous polyamines putrescine, spermidine and spermine and ethylene on in vitro morphogenesis of Aechmea distichantha (Bromeliaceae). The plants obtained in vitro by shoots division were transferred to MS growth regulators free, MS + 10 μmol Put, MS + 10 μmol Spd, MS + 10 μmol Spm, MS + 10 mg/L ethylene and MS + 20 mg/L ethylene. Plants were harvest after 0, 15, 30, 45 and 60 days of culture. Number of shoots and roots and endogenous concentrations of polyamines Put, Spd and Spm, protein and peroxidase activity in leaves were evaluated. Spd stimulated shoots formation on A. Distichantha. All treatments had deleterious effect on rhizogenesis. Plants treated with polyamines had higher proteins levels when compared to ethylene indicating the growing and development of explants. Ethylene treatment had no effect on polyamines levels. Thus, the biosynthetic routes of ethylene and polyamines may not compete for the common precursor S-adenosylmethionine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the alternatives to autoclaving culture media is chemical sterilization, which may cause fewer changes to the chemical composition of the media. In this study, the effect of chemical sterilization by inclusion of chlorine dioxide (ClO2) in the culture medium on the in vitro development of gerbera (Gerbera jamesonii) cv. AL101, cultured at different stages of micropropagation, was evaluated. The following five concentrations of ClO2 were tested: 0%, 0.0025%, 0.0050%, 0.0075%, and 0.010%. Autoclaved medium was used as the control. ClO2 in the culture medium reduced contamination at rates comparable to autoclaving when tested at three stages of the culture process: in vitro establishment, multiplication, and rooting. Plantlets grown in culture media sterilized with ClO2 showed similar or better development than those grown in autoclaved culture medium. Use of 0.0025% ClO2 to sterilize the culture medium resulted in better plantlet development than autoclaved medium, regardless of the stage of micropropagation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite the socioeconomic importance of walnut trees, poor rooting and recalcitrance to in vitro culture have hampered the establishment of high-yield clonal plantations. To improve walnut micropropagation, we introduced several modifications to current methods and evaluated the effects on microshoot performance and acclimatization. Nine selected genotypes (13-year-old trees) of the commercial hybrid Juglans major 209 x J. regia were cultured in vitro on DKW-C medium supplemented with 4.4 µM BA and 50 µM IBA. A protocol was developed that relies on the use of 0.40 mM phloroglucinol during shoot multiplication, 0.20 mM previous root induction, and 6.81 mg/L Fe3+ (FeEDDHA). Moreover, the addition of 83.2 µM glucose during the root expression phase significantly improved plant survival during acclimatization. Phloroglucinol promoted microshoot elongation but inhibited rooting, especially at concentrations above 0.40 mM. Replacing FeEDTA by FeEDDHA diminished chlorotic symptoms and improved rooting, with up to 90% microshoots developing viable roots. Likewise, glucose was more efficient than sucrose or fructose in promoting plant survival. At the proposed working concentrations, neither glucose nor FeEDDHA caused any noticeable deleterious effect on walnut micropropagation. Microscopic analysis revealed the physical continuity between adventitious roots and stem pericycles. Analysis of leaf genomic DNA with eight polymorphic microsatellite markers was supportive of the clonal fidelity and genetic stability of the micropropagated material. Successful clonal plantations (over 5,800 ramets) have been established by applying this protocol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Micropropagation requires controlling contamination that might compromise the success of the process. Thermal sterilization is traditionally used; however, costs deriving from equipment acquisition and maintenance render this technique costly. With the purpose of finding an alternative to thermal sterilization, this research aimed at assessing the efficiency and ideal concentration of sodium hypochlorite for sterilization of culture media and glassware used during rooting of micropropagated Gerbera hybrida cv. Essandre. Two experiments were carried out. In the first one, treatments consisted of control I (no sterilization), control II (thermal sterilization), and total active chlorine concentrations of 0.0005, 0.001, 0.002 and 0.003%. In the second experiment, based on the results observed in the first experiment, treatments consisted of control I (thermal sterilization) and II (chemical sterilization), and total active chlorine concentrations of 0.002, 0.0025 and 0.003%. Plant behavior was assessed based on the length of aerial part and roots, number of roots, and dry biomass of plants. Results showed that the addition of an active chlorine concentration of 0.003% to culture media provided total control of contaminants, and there were no significant differences regarding the variables analyzed between plants obtained with thermal sterilization and with sodium hypochlorite sterilization. Thus, chemical sterilization can be used as a replacement for thermal sterilization of nutrition media for rooting of gerbera in vitro.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Somatic embryogenesis represents a valuable tool for the studies on the basic aspects of plant embryo development. Today this process is used as a potencial technique for large-scale plant micropropagation although, so far, it has been applied to only a small number of species. However, when somatic embryos are malformed they are considered economically useless. In Acca sellowiana (O. Berg) Burret, an important fruit-producing crop, large amounts of anomalous somatic embryos (76.3%) were found just after 40 days of culture of explants in a 2,4-D containing medium. Among the anomalous forms found in the cotiledonary stage, 12.2% consisted of fused embryos, 40.4% displayed fused cotyledons, 13.0% presented supernumerary cotyledons, and 10.7% showed absence or poorly developed cotyledons, including those without the shoot apical meristem. Histological analyses indicated that the altered embryos were formed either directly from cotyledons, hypocotyl and radicle of the zygotic embryos used as explants, or indirectly from calli formed from these tissue parts. It is suggested that the formation of anomalous somatic embryos, as well as a low frequency of conversion into emblings reflect physiological and/or genetic disturbances triggered by the presence of 2,4-D in the medium. In vitro experimental alternative approaches are discussed in order to lessen the occurrence of malformed somatic embryos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Passiflora alata in vitro organogenesis was studied based on explant type, culture medium composition, and incubation conditions. The results indicated that the morphogenic process occurred more efficiently when hypocotyl segment-derived explants were cultured in media supplemented with cytokinin and AgNO(3) incubated under a 16-h photoperiod. The shoot bud elongation and plant development were obtained by transferring the material to MSM culture medium supplemented with GA(3) and incubated in flasks with vented lids. Histological analyses of the process revealed that the difficulties in obtaining plants could be related to the development of protuberances and leaf primordia structures, which did not contain shoot apical meristem. Roots developed easily by transferring elongated shoots to 1/2 MSM culture medium. Plant acclimatization occurred successfully, and somaclonal variation was not visually detected. The efficiency of this organogenesis protocol will be evaluated for genetic transformation of this species to obtain transgenic plants expressing genes that can influence the resistance to Cowpea aphid borne mosaic virus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In vitro propagated plants are believed to be free of microbes. However, after 5 years of in vitro culture of pineapple plants, without evidence of microbial contamination, the use of culture-independent molecular approach [classifying heterogeneous nucleic acids amplified via universal and specific 16S rRNA gene by polymerase chain reaction (PCR)], and further analysis by denaturing gradient gel electrophoresis (DGGE) revealed endophytic bacteria in roots, young and mature leaves of such plants. The amplification of 16S rRNA gene (Bacteria domain) with the exclusion of the plant chloroplast DNA interference, confirmed the presence of bacterial DNA, from endophytic microorganisms within microplant tissues. PCR-DGGE analysis revealed clear differences on bacterial communities depending on plant organ. Group-specific DGGE analyses also indicated differences in the structures of Actinobacteria, Alphaproteobacteria and Betaproteobacteria communities in each part of plants. The results suggest the occurrence of a succession of bacterial communities colonizing actively the microplants organs. This study is the first report that brings together evidences that pineapple microplants, previously considered axenic, harbor an endophytic bacterial community encompassing members of Actinobacteria, Alphaproteobacteria and Betaproteobacteria group which is responsive to differences in organs due to plant development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study describes the direct regeneration of protocorm-like bodies (PLBs) in leaf explants of the tropical species Oncidium flexuosum. The explants were inoculated in a solid, modified Murashige and Skoog (MS) medium with different concentrations of the growth regulator thidiazuron (TDZ) and with or without 2,4-dichlorophenoxyacetic acid (2,4-D) and naphthalene acetic acid (NAA), and kept away from light or in a 16-h photoperiod. The presence of auxins, 2,4-D, and NAA inhibited the formation of PLBs. The highest frequency of explants that regenerated PLBs (80%) was obtained when they were maintained in a culture medium containing 1.5 mu M TDZ under dark conditions. In the same culture medium but under a 16-h photoperiod, 95% of the leaf explants presented necrosis. Therefore, darkness was crucial for the regeneration of PLBs in O. flexuosum leaf explants, which is in disagreement with the literature. PLBs developed from the division of epidermal and subepidermal cells mainly on the adaxial side of the apex region of the explant. Plants with well-developed leaves and roots grew after the PLBs were transferred to growth regulator-free medium under a 16-h photoperiod.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Observations of cells of axenic peach palm (Bactris gasipaes) microplants by light microscopy revealed movements of small particles within the cells. The phenomenon was characterized initially as Brownian movement, but electron microscopy revealed the presence of an intracellular bacterial community in these plants. Microscopy observations revealed the particular shapes of bacterial cells colonizing inner tissues of analyzed plants. Applying a molecular characterization by polymerase chain reaction and denaturing gradient gel electrophoresis, it was revealed the existence of bacterial rRNA within the plants. Sequencing of the rRNA identified three different phylogenetic groups; two bands had a high degree of similarity to sequences from Moraxella sp. and Brevibacillus sp., and a third sequence was similar to a non-cultivated cyanobacterium. The presence of those endosymbionts, called bacteriosomes, in axenic peach palm microplants raises the question of whether these stable endosymbionts were acquired in the process of evolution and how could they benefit the process of plants micropropagation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A protocol based on seed culture was developed for efficient in vitro propagation of lentil (Lens culinaris Medik). Benzyladenine (BA), thidiazuron (TDZ), and kinetin all induced multiple shoot formation. In terms of the number of long shoots (>2.0 cm) produced per seed, BA and TDZ at optimum concentrations (0.2-0.4 and 0.1 mg/litre, respectively) had similar efficiency, whereas kinetin produced less shoots. Murashige and Skoog (MS) salt composition was better than that of Gamborge (B5) for shoot induction. Increasing calcium (Ca) concentration was necessary to overcome shoot-tip necrosis. For shoot elongation, fresh medium of the same composition of shoot induction medium could be used for stumps from medium with low BA (

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nodal shoot cultures of 'Clone 003', a selected Australian papaya cultivar, were cultured on modified De Fossard medium supplemented with chemicals that either promote ethylene evolution or inhibit action while in culture. Nodal shoot cultures grown in the presence of 1-aminocyclopropane carboxylic acid (ACC, 1.0 mM) resulted in a significant reduction in percent fresh and dry weights, shoot length, leaf area, petiole length and chlorophyll content, but leaf development was significantly increased. In contrast, nodal cultures grown in the presence of silver thiosulphate (STS, 0.5 mM) significantly produced the highest percentage of fresh and dry weights, shoot length, leaf production, leaf area expansion, petiole length and leaf chlorophyll content. Nodal cultures and rooted whole plantlets placed in medium-sized (125 mL) culture vessels had significantly better growth than those cultures placed in small (70 mL) or in large (250 mL) vessels. Cultures grown in medium-sized vessels had higher fresh and dry weights, longer shoots, more leaves and larger leaf area than those cultures placed in smaller or larger vessels. Similarly, values for said growth parameters and for chlorophyll content of the nodal and rooted whole plantlets were higher when they were incubated under high light intensity of 120 mumol m(-2)s(-1) at a prevailing temperature of either 20+/-1 C or 25+/-1 C.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Parte da Dissertação do primeiro autor, apresentada ao Centro de Ciências Agrárias da Universidade Federal do Espírito Santo/PPGPV, Alegre-ES, como parte das exigências para obtenção do grau de Mestre em Produção Vegetal/Fitotecnia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Crambe (Crambe abyssinica) pertence à família Brassicaceae, originário da Etiópia e principalmente destinado à produção de forragem (30 a 32% de proteína bruta). Atualmente, tem sido bastante cultivado visando à extração de óleo vegetal. Com os atuais incentivos à busca de fontes de energias renováveis, o cultivo de crambe vem ganhando papel de destaque na produção de biodiesel por suas diversas vantagens, como: (a) rápido ciclo de vida (colhida em torno de 90 dias); (b) alta produção de biomassa; (c) alta produtividade de sementes (1000 e 1500 kg ha-1); (d) menor custo de produção em relação a outras fontes oleaginosas, como, canola, girassol e soja; (e) um percentual de óleo total na semente entre 32 e 38%, superando, por exemplo, a soja; (f) potencial de fitorremediação, eficiente na descontaminação de arsênio, cromo e outros metais pesados; e (g) elevado percentual de ácido erúcico (50 a 60%) sendo útil na indústria de plástico e lubrificante. Devido aos poucos trabalhos realizados com crambe, abre-se um vasto campo de investigações científicas que tenham como objetivo desenvolver as potencialidades dessa cultura e, consequentemente, melhorar os aspectos agronômicos e tecnológicos para seu emprego na indústria de biodiesel. Nesse contexto, as técnicas de cultivo in vitro foram importantes tanto para a propagação massal, quanto como ferramenta para uma possível aplicação de outras técnicas biotecnológicas, contribuindo para uma produção homogênea, fiel e em larga escala. Portanto, este trabalho teve como objetivo geral avaliar as condições mais favoráveis à germinação, estabelecimento in vitro e micropropagação de Crambe abyssinica Hochst., além de verificar possíveis alterações genéticas e anatômicas, possibilitando a regeneração e produção de plântulas viáveis. Para a germinação e estabecimento in vitro de crambe, as condições mais favoráveis foram em meio B5 ou WPM, na presença ou ausência de pericarpo e na presença de luz. Na micropropagação dessa espécie, uma frequência satisfatória de regeneração de brotos foi obtida a partir de segmentos apicais utilizados como explante em meio contendo 5 μM de BAP (6- benzilaminopurina), e o alongamento foi satisfatório com 1 μM de GA3 (ácido giberélico). Os marcadores moleculares ISSR (Inter-Simples Sequence Repeats) utilizados para a análise da estabilidade genética indicaram que o segmento apical de crambe é um explante confiável para a micropropagação de plantas geneticamente verdadeiras (true-to-tipe), ou seja, mantém a estabilidade genética. As diversas fontes de citocininas e concentrações utilizadas neste trabalho não promoveram mudanças, no sentido de alterar a organização e/ou a espessura em relação ao controle, e as alterações observadas na estrutura e espessura das folhas dos tratamentos de aclimatização prejudicaram o processo de estabelecimento da plântula ex vitro. Contudo, existe a necessidade de um enraizamento e aclimatização eficiente para completa propagação in vitro de crambe. Portanto, este protocolo de regeneração de plantas in vitro de crambe pode ser útil no processo de criação e desenvolvimento de novas cultivares em um tempo mais curto e no melhoramento genético usando explantes apicais.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In vitro propagation has become an effective practice for large-scale production of strawberry plants. The objective of this study was to evaluate the hyperhydricity and the multiplication capacity of two strawberry varieties (Fragaria x ananassa Duch. 'Dover' and 'Burkley') propagated in vitro. Plants maintained in MS medium supplemented with 1.0 mg L-1 BA were individualized and transferred to the same medium solidified with Agar (6.5 g L-1) or Phytagel® (2.5 g L-1) and BA at different concentrations (0; 0.5; 1.0; 2.0 and 3.0 mg L-1). Biochemical and anatomical analyses were carried out, as well as the analysis of the morphological hyperhydricity characteristics. The analysis of data showed: a) the increase in cytokinin concentration increased hyperhydricity frequency in both varieties; b) at concentrations up to 2.0 mg L-1 BA, the replacement of Agar by Phytagel® induced a higher formation of hyperhydric shoots; and c) the addition of BA induced oxidative stress, which is characterized by increased antioxidant activity and lipid peroxidation, as well as alterations at the cellular level, such as malformation of stomata and epidermal cells. In conclusion, the culture medium containing 0.5 mg L-1 BA solidified with Agar provided lower hyperhydricity percentages in association with higher rates of shoot proliferation in strawberry.