30 resultados para Mandelbrot
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
A Geometria Fractal é um ramo novo da Matemática que vem sendo estudado desde sua descoberta nos anos sessenta por Benoit Mandelbrot. Por se tratar de uma geometria essencialmente intuitiva, muito se tem comentado a respeito da possibilidade de sua introdução ainda no Ensino Fundamental e Médio de nossas escolas. Assim, um grande número de atividades envolvendo Geometria Fractal foram e ainda estão sendo desenvolvidas com o intuito de tornar o conteúdo da Matemática curricular mais significativo ao aluno. Entretanto, muitas carecem de um estudo mais aprofundado no que tange ao seu verdadeiro grau de eficácia. Para tentar vislumbrar até que ponto estas atividades podem se caracterizar como um recurso didático válido, elaboramos e ministramos um curso sobre Geometria Fractal para onze alunos do 3 ano do Ensino Médio de uma escola pública estadual na cidade de Santarém-Pa. O curso consistia de uma parte teórica sobre o assunto e algumas atividades selecionadas de tal forma que estas pudessem abranger alguns tópicos da Matemática curricular já visto por eles em suas trajetórias escolares. Aplicamos antes do curso um pré-teste e no final um pós-teste para avaliar a compreensão dos assuntos abordados. Os resultados obtidos mostram uma evolução tanto quantitativa, quanto qualitativa na (re)apropriação dos conceitos matemáticos trabalhados durante o curso. O estudo ainda sugere que a Geometria Fractal pôde proporcionar aos alunos uma relação mais forte entre os saberes do cotidiano e o escolar, além de ter proporcionado uma visão dinâmica da Matemática como uma ciência que avança, e não como um corpo de conhecimentos prontos e acabados.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In questa tesi sono presentate la misura e la dimensione di Hausdorff, gli strumenti matematici che permettono di descrivere e analizzare alcune delle più importanti proprietà degli insiemi frattali. Inoltre viene introdotto il carattere di autosimilarità, comune a questi insiemi, e vengono mostrati alcuni tra i più noti esempi di frattali, come l'insieme di Cantor, la curva di Koch, l'insieme di Mandelbrot e gli insiemi di Julia. Di quest'ultimi sono presenti immagini ottenute tramite un codice Matlab.
Resumo:
Obiettivo della tesi è fornire nozioni di teoria della misura tramite cui è possibile l'analisi e la descrizione degli insiemi frattali. A tal fine vengono definite la Misura e la Dimensione di Hausdorff, strumenti matematici che permettono di "misurare" tali oggetti particolari, per i quali la classica Misura di Lebesgue non risulta sufficientemente precisa. Viene introdotto, inoltre, il carattere di autosimilarità, comune a molti di questi insiemi, e sono forniti alcuni tra i più noti esempi di frattali, come l'insieme di Cantor, l'insieme di Mandelbrot e il triangolo di Sierpinski. Infine, viene verificata l'ipotesi dell'esistenza di componenti di natura frattale in serie storiche di indici borsistici e di titoli finanziari (Ipotesi dei Mercati Frattali, Peters, 1990).
Resumo:
The large-crowned emergent tree Microberlinia bisulcata dominates rain forest groves at Korup National Park, Cameroon, along with two codominants, Tetraberlinia bifoliolata and T. korupensis. M. bisulcata has a pronounced modal size frequency distribution around 110 cm stem diameter: its recruitment potential is very poor. It is a long-lived light-demanding species, one of many found in African forests. Tetraberlinia species lack modality, are more shade tolerant, and recruit better. All three species are ectomycorrhizal. M. bisulcata dominates grove basal area, even though it has similar numbers of trees (≥50 cm stem diameter) as each of the other two species. This situation presented a conundrum that prompted a long-term study of grove dynamics. Enumerations of two plots (82.5 and 56.25 ha) between 1990 and 2010 showed mortality and recruitment of M. bisulcata to be very low (both rates 0.2% per year) compared with Tetraberlinia (2.4% and 0.8% per year), and M. bisulcata grows twice as fast as the Tetraberlinia. Ordinations indicated that these three species determined community structure by their strong negative associations while other species showed almost none. Ranked species abundance curves fitted the Zipf-Mandelbrot model well and allowed “overdominance” of M. bisulcata to be estimated. Spatial analysis indicated strong repulsion by clusters of large (50 to <100 cm) and very large (≥100 cm) M. bisulcata of their own medium-sized (10 to <50 cm) trees and all sizes of Tetraberlinia. This was interpreted as competition by M. bisulcata increasing its dominance, but also inhibition of its own replacement potential. Stem coring showed a modal age of 200 years for M. bisulcata, but with large size variation (50–150 cm). Fifty-year model projections suggested little change in medium, decreases in large, and increases in very large trees of M. bisulcata, accompanied by overall decreases in medium and large trees of Tetraberlinia species. Realistically increasing very-large-tree mortality led to grove collapse without short-term replacement. M. bisulcata most likely depends on climatic events to rebuild its stands: the ratio of disturbance interval to median species' longevity is important. A new theory of transient dominance explains how M. bisulcata may be cycling in abundance over time and displaying nonequilibrium dynamics.
Resumo:
presentación gráfico-teórica acerca de las artes visuales y su planteo de la teoría del caos y su relación con los fractales desarrollados por el matemático Mandelbrot durante los años '70
Resumo:
The mathematical models of the complex reality are texts belonging to a certain literature that is written in a semi-formal language, denominated L(MT) by the authors whose laws linguistic mathematics have been previously defined. This text possesses linguistic entropy that is the reflection of the physical entropy of the processes of real world that said text describes. Through the temperature of information defined by Mandelbrot, the authors begin a text-reality thermodynamic theory that drives to the existence of information attractors, or highly structured point, settling down a heterogeneity of the space text, the same one that of ontologic space, completing the well-known law of Saint Mathew, of the General Theory of Systems and formulated by Margalef saying: “To the one that has more he will be given, and to the one that doesn't have he will even be removed it little that it possesses.
Resumo:
Esta tesis doctoral nace con el propósito de entender, analizar y sobre todo modelizar el comportamiento estadístico de las series financieras. En este sentido, se puede afirmar que los modelos que mejor recogen las especiales características de estas series son los modelos de heterocedasticidad condicionada en tiempo discreto,si los intervalos de tiempo en los que se recogen los datos lo permiten, y en tiempo continuo si tenemos datos diarios o datos intradía. Con esta finalidad, en esta tesis se proponen distintos estimadores bayesianos para la estimación de los parámetros de los modelos GARCH en tiempo discreto (Bollerslev (1986)) y COGARCH en tiempo continuo (Kluppelberg et al. (2004)). En el capítulo 1 se introducen las características de las series financieras y se presentan los modelos ARCH, GARCH y COGARCH, así como sus principales propiedades. Mandelbrot (1963) destacó que las series financieras no presentan estacionariedad y que sus incrementos no presentan autocorrelación, aunque sus cuadrados sí están correlacionados. Señaló también que la volatilidad que presentan no es constante y que aparecen clusters de volatilidad. Observó la falta de normalidad de las series financieras, debida principalmente a su comportamiento leptocúrtico, y también destacó los efectos estacionales que presentan las series, analizando como se ven afectadas por la época del año o el día de la semana. Posteriormente Black (1976) completó la lista de características especiales incluyendo los denominados leverage effects relacionados con como las fluctuaciones positivas y negativas de los precios de los activos afectan a la volatilidad de las series de forma distinta.
Resumo:
Los desarrollos que se dan en la geometr?a a partir de propuestas como la de B. Mandelbrot y que dan lugar al desarrollo de estructuras fractales son del inter?s para que en este trabajo de grado se pretenda abordar la visualizaci?n como un proceso que influye en el pensamiento, desde el acercamiento que se hace a la geometr?a fractal. Particularmente como los estudiantes de grado noveno entienden un objeto fractal desde la visualizaci?n del mismo, a partir de situaciones did?cticas que consideren algunas construcciones que se destacan en el contexto de la geometr?a fractal, entre las que encontramos el conjunto de Cantor, el tri?ngulo de Sierpinski y la curva de Koch. Sin dejar de lado la importancia que se le brinda a la llegada de las nuevas tecnolog?as de la informaci?n a las aulas y que en educaci?n podr?an ser generadoras de numerosas expectativas respecto al conocimiento.
Resumo:
Las matemáticas, como muchas otras áreas del pensamiento, han sufrido en el tercio central del siglo XX el impacto de la corriente filosófica estructuralista. Esta tendía a desplazar el centro de atención hacia los problemas de fundamentación por una parte, y por otra subrayaba la importancia de las estructuras abstractas como la de conjunto, grupo u otras, que se presentan en diversas áreas de las matemáticas. En general la corriente estructuralista impregna a las matemáticas de los métodos del álgebra y es compañera inevitable de una tendencia hacia la abstracción. El estructuralismo ha estado lejos de ser un factor determinante en el desarrollo de la producción matemática en el último siglo, ya que el volumen ingente de investigación volcada hacia las aplicaciones ha pesado de forma decisiva en el resultado global. Sin embargo, es en el ámbito de la enseñanza de las matemáticas donde la influencia del estructuralismo ha sido más profunda, penetrando en los programas a todos los niveles educativos y provocando que al estudiar matemáticas, los estudiantes se queden con la impresión de que no hay nada nuevo en matemáticas desde Euclides o Pitágoras, es decir, desde hace más de 2000 años. Con un poco de suerte, algunos se cree que las matemáticas dejaron de desarrollarse después de la creación del cálculo diferencial e integral (hace unos 300 años), en cambio no tenemos la misma impresión sobre otras ciencias como física, química o biología. La geometría fractal, cuyos primeros desarrollos datan de finales del siglo XIX, ha recibido durante los últimos treinta años, desde la publicación de los trabajos de Mandelbrot, una atención y un auge crecientes. Lejos de ser simplemente una herramienta de generación de impresionantes paisajes virtuales, la geometría fractal viene avalada por la teoría geométrica de la medida y por innumerables aplicaciones en ciencias tan dispares como la Física, la Química, la Economía o, incluso, la Informática.
Resumo:
Doctor of Philosophy in Mathematics
Resumo:
Questa tesi ha lo scopo di descrivere le proprietà matematiche degli insiemi frattali. Nell'introduzione è spiegato brevemente cosa sono i frattali e vengono fatti alcuni esempi di frattali in natura, per poi passare agli aspetti più matematici nei capitoli. Nel capitolo uno si parla della misura e della dimensione di Hausdorff e viene calcolata, seguendo la definizione, per l'insieme di Cantor. Poi nel secondo capitolo viene descrittà l'autosimilarità e viene enunciato un importante teorema che lega l'autosimilarità e la dimensione di Hausdorff. Nel terzo capitolo vengono descritti degli insiemi frattali molto importanti: quelli di Mandelbrot e di Julia.