Propriedades topológicas dos conjuntos de Julia
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
11/06/2014
11/06/2014
14/03/2008
|
Resumo |
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Pós-graduação em Matemática - IBILCE Seja f : C ! C uma fun»c~ao polinomial. O conjunto de Julia, J(f), associado a f, é o conjunto dos números complexos z onde a família ffng dos iterados de f não é normal em z. Neste trabalho, estudaremos varias propriedades topológicas de J(f). Calcularemos também a dimensão de Hausdor® de J(fc), onde fc(z) = z2+c e jcj é grande, e estudaremos as propriedades do conjunto de Mandelbrot associado a fc, isto é, o conjunto M dos números complexos pelos quais J(fc)é conexo. Em particular provaremos o Teorema de Douady-Hubard que menciona que M é conexo. Let f : C ! C be a polynomial function. The Julia set, J(f) associated to f, is the set of the complex numbers z where the family ffng of iterates of f is not normal at z. In this work, we will study many topological properties of J(f). We will compute the Hausdor® dimension of J(fc) too, where fc(z) = z2 + c and jcj is large, and we will study the properties of the Mandelbrot set associated to fc, that is, the set M of the complex numbers by which J(fc) is connected. In particular we will prove the Theorem of Douady-Hubard that mentions the connectedness of M. |
Formato |
82 f. : il. |
Identificador |
UCEDA, Rafael Asmat. Propriedades topológicas dos conjuntos de Julia. 2008. 82 f. Dissertação (mestrado) - Universidade Estadual Paulista, Instituto de Biociências, Letras e Ciências Exatas, 2008. http://hdl.handle.net/11449/92953 000549397 uceda_rma_me_sjrp.pdf 33004153071P0 |
Idioma(s) |
por |
Publicador |
Universidade Estadual Paulista (UNESP) |
Direitos |
openAccess |
Palavras-Chave | #Sistemas dinâmicos diferenciais #Geometria #Topologia #Sistemas dinâmicos #Conjuntos de Julia #Mandelbrot #Connectedness #Hausdor® dimension |
Tipo |
info:eu-repo/semantics/masterThesis |