964 resultados para Maleic Anhydride Grafting


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The effects of modifying blends of poly(vinyl chloride) (PVC) with linear low density polyethylene (LLDPE) by means of acrylic acid, maleic anhydride, phenolic resins and p-phenylene diamine were investigated. Modification by acrylic acid and maleic anhydride in the presence of dicumyl peroxide was found to be the most useful procedure for improving the mechanical behaviour and adhesion properties of the blend. The improvement was found to be due mainly to the grafting of the carboxylic acid to the polymer chains; grafting was found to be more effective in LLDPE/PVC blends than in pure LLDPE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Expanded polystyrene (EPS) constitutes a considerable part of thermoplastic waste in the environment in terms of volume. In this study, this waste material has been utilized for blending with silica-reinforced natural rubber (NR). The NR/EPS (35/5) blends were prepared by melt mixing in a Brabender Plasticorder. Since NR and EPS are incompatible and immiscible a method has been devised to improve compatibility. For this, EPS and NR were initially grafted with maleic anhydride (MA) using dicumyl peroxide (DCP) to give a graft copolymer. Grafting was confirmed by Fourier Transform Infrared Spectroscopy (FTIR) spectroscopy. This grafted blend was subsequently blended with more of NR during mill compounding. Morphological studies using Scanning Electron Microscopy (SEM) showed better dispersion of EPS in the compatibilized blend compared to the noncompatibilized blend. By this technique, the tensile strength, elongation at break, modulus, tear strength, compression set and hardness of the blend were found to be either at par with or better than that of virgin silica filled NR compound. It is also noted that the thermal properties of the blends are equivalent with that of virgin NR. The study establishes the potential of this method for utilising waste EPS

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The main objectives of this research were to develop optimised chemical compositions and reactive processing conditions for grafting a functional monomer maleic anhydride (MA) in polypropylene (PP), ethylene propylene diene monomer (EPDM) and mixtures of PP-EPDM, and to optimise synthetic routes for production of PP/EPDM copolymers for the purpose of compatibilisation of PP/EPDM blends. The MA-functionalisation was achieved using an internal mixer in the presence of low concentrations (less than 0.01 molar ratio) of a free radical initiator. Various methods were used to purify MA-functionalised PP and the grafting yield was determined using either FTIR or titrametry. The grafting yield of MA alone, which due to its low free-radical reactivity towards polymer macroradicals, was accompanied by severe degradation in the case of PP and crosslinking for EPDM. In the case of MA-functionalised PP/EPDM, both degradation and crosslinking occurred though not to a great extent. The use of tri-functional coagents e.g. trimethylopropane triacrylates (TRIS) with MA, led to high improvement of the grafting yield of MA on the polymers. This is almost certainly due to high free-radical activity of TRIS leading to copolymerisation of MA and TRIS which was followed by grafting of the copolymer onto the polymer backbone. In the case of PP, the use of coagent was also found to reduce the polymer degradation. PP/EPDM copolymers with optimum tensile properties were synthesised using a 'one-step' continues reactive processing procedure. This was achieved firstly by functionalisation of a mixture of PP (higher w/w ratio) and EPDM (low w/w ratio) with MA, in the presence of the coagent TRIS and a small concentration of a free radical initiator. This was then followed by an imidisation reaction with the interlinking agent hexamethylene diamine (HEMDA). Small amount of copolymers, up to 5 phr, which were interlinked with up to 15 phr of HEMDA, were sufficient to compatibilise PP/EPDM75/25 blends resulting in excellent tensile properties compared to binary PP/EPDM 75/25 blend. Improvement in blend's compatibility and phases-stabilisation (observed through tensile and SEM analysis) was shown in all cases with significant interphases adhesion improvement between PP and EPDM, and reduction in domain size across the fractured surface indicating efficient distribution of the compatibiliser.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

One of the main objectives of this study was to functionalise various rubbers (i.e. ethylene propylene copolymer (EP), ethylene propylene diene terpolymer (EPDM), and natural rubber (NR)) using functional monomers, maleic anhydride (MA) and glycidyl methacrylate (GMA), via reactive processing routes. The functionalisation of the rubber was carried out via different reactive processing methods in an internal mixer. GMA was free-radically grafted onto EP and EPDM in the melt state in the absence and presence of a comonomer, trimethylolpropane triacrylate (TRlS). To optinuse the grafting conditions and the compositions, the effects of various paranleters on the grafting yields and the extent of side reactions were investigated. Precipitation method and Soxhlet extraction method was established to purifY the GMA modified rubbers and the grafting degree was determined by FTIR and titration. It was found that without TRlS the grafting degree of GMA increased with increasing peroxide concentration. However, grafting was low and the homopolymerisation of GMA and crosslinking of the polymers were identified as the main side reactions competing with the desired grafting reaction for EP and EPDM, respectively. The use of the tri-functional comonomer, TRlS, was shown to greatly enhance the GMA grafting and reduce the side reactions in terms of the higher GMA grafting degree, less alteration of the rheological properties of the polymer substrates and very little formation of polyGMA. The grafting mechanisms were investigated. MA was grafted onto NR using both thermal initiation and peroxide initiation. The results showed clearly that the reaction of MA with NR could be thermally initiated above 140°C in the absence of peroxide. At a preferable temperature of 200°C, the grafting degree was increased with increasing MA concentration. The grafting reaction could also be initiated with peroxide. It was found that 2,5-dimethyl-2,5-bis(ter-butylproxy) hexane (TIOI) was a suitable peroxide to initiate the reaction efficiently above I50°C. The second objective of the work was to utilize the functionalised rubbers in a second step to achieve an in-situ compatibilisation of blends based on poly(ethylene terephthalate) (PET), in particular, with GMA-grafted-EP and -EPDM and the reactive blending was carried out in an internal mixer. The effects of GMA grafting degree, viscosities of GMAgrafted- EP and -EPDM and the presence of polyGMA in the rubber samples on the compatibilisation of PET blends in terms of morphology, dynamical mechanical properties and tensile properties were investigated. It was found that the GMA modified rubbers were very efficient in compatibilising the PET blends and this was supported by the much finer morphology and the better tensile properties. The evidence obtained from the analysis of the PET blends strongly supports the existence of the copolymers through the interfacial reactions between the grafted epoxy group in the GMA modified rubber and the terminal groups of PET in the blends.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The main aim of this work was to study the effect of two comonomers, trimethylolpropane trimethacrylate (TRIS) and divinylbenzene (DVB) on the nature and efficiency of grafting of two different monomers, glycidyl methacrylate (GMA) and maleic anhydride (MA) on polypropylene (P) and on natural rubber (NR) using reactive processing methods. Four different peroxides, benzoyl peroxide (BPO), dicumyl peroxide (DCP), 2,5-dimethyl-2,5-bis-(tert-butyl peroxy) hexane (t-101), and 1,1-di(tert-butylperoxy)-3,3,5-trimethyl cyclohexene (T-29B90) were examined as free radical initiators. An appropriate methodology was established and chemical composition and reactive processing parameters were examined and optimised. It was found that in the absence of the coagents DVB and TRIS, the grafting degree of GMA and MA increased with increasing peroxide concentration, but the level of grafting was low and the homopolymerisaton of GMA and the crosslinking of NR or chain scission of PP were identified as the main side reactions that competed with the desired grafting reaction in the polymers. At high concentrations of the peroxide T-101 (>0.02 mr) cross linking of NR and chain scission of PP became dominant and unacceptable. An attempt to add a reactive coagent, e.g. TRIS during grafting of GMA on natural rubber resulted in excessive crosslinking because of the very high reactivity of this comonomer with the C=C of the rubber. Therefore, the use of any multifunctional and highly reactive coagent such as TRIS, could not be applied in the grafting of GAM onto natural rubber. In the case of PP, however, the use of TRIS and DVB was shown to greatly enhance the grafting degree and reduce the chain scission with very little extent of monomer homopolymerisation taking place. The results showed that the grafting degree was increased with increasing GMA and MA concentrations. It was also found that T-101 was a suitable peroxide to initiate the grafting reaction of these monomers on NR and PP and the optimum temperature for this peroxide was =160°C. A very preliminary work was also conducted on the use of the functionalised-PP (f-PP) in the absence and presence of the two comonomers (f-PP-DVB or f-PP-TRIS) for the purpose of compatibilising PP-PBT blends through reactive blending. Examination of the morphology of the blends suggested that an effective compatibilisation has been achieved when using f-PP-DVB and f-PP-TRIS, however more work is required in this area.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, the rheological behavior of block copolymers with different morphologies (lamellar, cylindrical, spherical, and disordered) and their clay-containing nanocomposites was studied using small amplitude oscillatory shear. The copolymers studied were one asymmetric starblock styrene-butadiene-styrene copolymer and four styrene-ethylene/butylenes-styrene copolymers with different molecular architectures, one of them being modified with maleic anhydride. The nanocomposites of those copolymers were prepared by adding organophilic clay using three different preparation techniques: melt mixing, solution casting, and a hybrid melt mixing-solution technique. The nanocomposites were characterized by X-ray diffraction and transmission electron microscopy, and their viscoelastic properties were evaluated and compared to the ones of the pure copolymers. The influence of copolymer morphology and presence of clay on the storage modulus (G`) curves was studied by the evaluation of the changes in the low frequency slope of log G` x log omega (omega: frequency) curves upon variation of temperature and clay addition. This slope may be related to the degree of liquid- or solid-like behavior of a material. It was observed that at temperatures corresponding to the ordered state, the rheological behavior of the nanocomposites depended mainly on the viscoelasticity of each type of ordered phase and the variation of the slope due to the addition of clay was small. For temperatures corresponding to the disordered state, however, the rheological behavior of the copolymer nanocomposites was dictated mostly by the degree of clay dispersion: When the clay was well dispersed, a strong solid-like behavior corresponding to large G` slope variations was observed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study described the formulation and characterisation of the viscoelastic, mechanical and mucoadhesive properties of thermoresponsive, binary polymeric systems composed of poloxamer (P407) and poly(acrylic acid, C974P) that were designed for use as a drug delivery platform within the oral cavity. Monopolymeric and binary polymeric formulations were prepared containing 10, 15 and 20% (w/w) poloxamer (407) and 0.10-0.25% (w/w) poly(acrylic acid, 934P). The flow theological and viscoelastic properties of the formulations were determined using controlled stress and oscillatory rheometry, respectively, the latter as a function of temperature. The mechanical and mucoadhesive properties (namely the force required to break the bond between the formulation and a pre-hydrated mucin disc) were determined using compression and tensile analysis, respectively. Binary systems composed of 10% (w/w) P407 and C934P were elastoviscous, were easily deformed under stress and did not exhibit mucoadhesion. Formulations containing 15 or 20% (w/w) Pluronic P407 and C934P exhibited a sol-gel temperature T(sol/gel), were viscoelastic and offered high elasticity and resistance to deformation at 37 degrees C. Conversely these formulations were elastoviscous and easily deformed at temperatures below the sol-gel transition temperature. The sol-gel transition temperatures of systems containing 15% (w/w) P407 were unaffected by the presence of C934P; however, increasing the concentration of C934P decreased the T(sol/gel) in formulations containing 20%(w/w) P407. Rheological synergy between P407 and C934P at 37 degrees C was observed and was accredited to secondary interactions between these polymers, in addition to hydrophobic interactions between P407 micelles. Importantly, formulations composed of 20% (w/w) P407 and C934P exhibited pronounced mucoadhesive properties. The ease of administration (below the T(sol/gel)) in conjunction with the viscoelastic (notably high elasticity) and mucoadhesive properties (at body temperature) render the formulations composed of 20% (w/w) P407 and C934P as potentially useful platforms for mucoadhesive, controlled topical drug delivery within the oral cavity. (c) 2009 Published by Elsevier B.V.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A simple synthesis of new amphiphilic chlorin derivatives from protoporphyrin-IX dimethyl ester is reported.The preparation Of Such compounds is based in a straightforward methodology, which involves the Diels-Alder reaction of protoporphyrin-IX dimethyl ester with maleic anhydride followed by addition of nucleophilic species to the initially formed cycloadducts, a transformation, which is highly regioselective. Preliminary photophysical studies with the new compounds show that they meet adequate features for PDT applications. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A one-step melt-mixing method is proposed to study dispersion and re-agglomeration phenomena of the as-received and functionalized graphite nanoplates in polypropylene melts. Graphite nanoplates were chemically modified via 1,3-dipolar cycloaddition of an azomethine ylide and then grafted with polypropylene-graft-maleic anhydride. The effect of surface functionalization on the dispersion kinetics, nanoparticle re-agglomeration and interface bonding with the polymer is investigated. Nanocomposites with 2 or 10 wt% of as-received and functionalized graphite nanoplates were prepared in a small-scale prototype mixer coupled to a capillary rheometer. Samples were collected along the flow axis and characterized by optical microscopy, scanning electron microscopy and electrical conductivity measurements. The as-received graphite nanoplates tend to re-agglomerate upon stress relaxation of the polymer melt. The covalent attachment of a polymer to the nanoparticle surface enhances the stability of dispersion, delaying the re-agglomeration. Surface modification also improves interfacial interactions and the resulting composites presented improved electrical conductivity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação de mestrado em Propriedades e Tecnologias de Polímeros

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tese de Doutoramente em Ciências (área de especialização em Química).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia de Materiais

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The behavior of stone groundwood / polypropylene injection-molded composites was evaluated with and without coupling agent. Stone groundwood (SGW) is a fibrous material commonly prepared in a high yield process and mainly used for papermaking applications. In this work, the use of SGW fibers was explored as a reinforcing element of polypropylene (PP) composites. The surface charge density of the composite components was evaluated, as well as the fiber’s length and diameter inside the composite material. Two mixing extrusion processes were evaluated, and the use of a kinetic mixer, instead of an internal mixer, resulted in longer mean fiber lengths of the reinforcing fibers. On the other hand, the accessibility of surface hydroxyl groups of stone groundwood fibers was improved by treating the fibers with 5% of sodium hydroxide, resulting in a noticeable increase of the tensile strength of the composites, for a similar percentage of coupling agent. A new parameter called Fiber Tensile Strength Factor is defined and used as a baseline for the comparison of the properties of the different composite materials. Finally the competitiveness of stone groundwood / polypropylene / polypropylene-co-maleic anhydride system, which compared favorably to sized glass-fiber / polypropylene GF/PP and glass-fiber / polypropylene / polypropylene-co-maleic anhydride composite formulations, was quantified by means of the fiber tensile strength factor

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tämän diplomityön tarkoituksena oli tutkia miten kuluttajien kierrättämästä polyeteenitereftalaatista ( PET ) voi valmistaa tyydyttymättömiä polyesterihartseja. Työssä valmistettiin yleiskäyttöön soveltuva laminointihartsi sekä 'gel coat' -hartsi jota käytetään esim. veneiden pintamaalina. Yleishartsin depolymerointiin käytettiin propyleeniglykolia ja 'gel coat' -hartsin valmistamiseen neopentyyliglykolia. Polykondensaatiovaiheessa reaktioon lisättiin maleiinihappoa ja lopuksi hartsit liuotettiin styreeniin. Kirjallisuusosassa esitetään eri menetelmiä PET:n depolymeroimiseksi. Lisäksi esitetään eri vaihtoehtoja glykolien, happojen, katalyyttien ja vinyylimonomeerien valitsemiseksi tyydyttymättömien polyesterihartsien valmistuksessa. Analyysimenetelmiä nestemäisten ja kovetettujen hartsien tutkimiseen ja vertailuun käydään läpi kuten myös erilaisia sovelluksia polyesterihartsien käyttämiseksi. Kokeellinen osa todisti että PET-pullojäte voidaan prosessoida hartsiksiilman uusia investointeja prosessilaitteistoon. PET:n glykolyysi kesti viidestäseitsemään tuntia ja polykondensaatiovaihe kahdesta ja puolesta viiteen tuntiin. Hartsien molekyylipainot ja mekaanisten testien tulokset olivat vertailukelpoisia kaupallisten hartsien antamien tulosten kanssa. Glykolyysivaiheen momomeeri- ja oligomeeripitoisuudet mitattiin geelipermeaatiokromatografialla, jotta nähtiin miten pitkälle depolymerisaatio oli edennyt. Tätä tietoa voidaan hyödyntää uusien hartsireseptin suunnittelussa. Polymeeriketjussa jäljellä olevien C=C kaksoissidosten määrä ja niiden isomeraatioaste maleaattimuodosta fumaraattimuotoon mitattiin 1H-NMR -menetelmällä. Tislevesien koostumus määritettiin kaasukromatografialla, ja tulokset kertoivat katalyytin sisältämän kloorin reagoineen glykolien kanssa, johtaen suureen glykolikulutukseen ja muihin ei-toivottuihin sivureaktioihin. Hartsien sietokykyä auringon valolle mitattiin niiden UV-absorption avulla. Kummastakin hartsista valmistettiin 'gel coat' -maalit jotkalaitettiin sääkoneeseen, joka simuloi auringonpaistetta ja vesisadetta vuorotellen. Näistä 'gel coateista' mitattiin niiden kellastumista. Kummastakin hartsista tehdyt valut asetettiin myös sääkoneeseen ja IR-spektreistä ennen jajälkeen koetta nähtiin että C=O ja C-O esterisidoksia oli hajonnut.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Liquid polybutadiene (PBLH) was modified with maleic anhydride (MA). The material (PBLHM) was characterized and used to prepare hybrid materials by blending with glycerol-plasticized cassava starch (TPS) and an organophilic clay at 5 wt% content. Processing was performed by extrusion under mild conditions and led to TPS/PBLHM/clay hybrids, at 95/5 to 85/15 TPS/PBLHM compositions, which were characterized by contact angle measurements, X-ray diffraction and mechanical analysis. The results revealed a reduction in the hydrophilicity and the reinforcement of the hybrid materials. Biodegradability tests showed that the addition of clay and of PBLHM led to materials with high biodegradability.