990 resultados para Método de Galerkin
Resumo:
This work presents a theoretical analysis and numerical and experimental results of the scattering characteristics of frequency selective surfaces, using elements of type patch perfectly conductor. The structures are composed of two frequency selective surfaces on isotropic dielectric substrates cascaded, separated by a layer of air. The analysis is performed using the method of equivalent transmission line in combination with the Galerkin method, to determine the transmission and reflection characteristics of the structures analyzed. Specifically, the analysis uses the impedance method, which models the structure by an equivalent circuit, and applies the theory of transmission lines to determine the dyadic Green's function for the cascade structure. This function relates the incident field and surface current densities. These fields are determined algebraically by means of potential incidents and the imposition of the continuity of the fields in the dielectric interfaces. The Galerkin method is applied to the numerical determination of the unknown weight coefficients and hence the unknown densities of surface currents, which are expanded in terms of known basis functions multiplied by these weight coefficients. From the determination of these functions, it becomes possible to obtain numerical scattered fields at the top and bottom of the structures and characteristics of transmission and reflection of these structures. At work, we present numerical and experimental results for the characteristics of transmission and reflection. Comparisons were made with other results presented in literature, and it was observed a good agreement in the cases presented suggestions continuity of the work are presented
Resumo:
Recently, an amazing development has been observed in telecommunication systems. Two good examples of this development are observed in mobile communication and aerospace systems. This impressive development is related to the increasing need for receiving and transmitting communication signals. Particularly, this development has required the study of new antennas and filters. This work presents a fullwave analysis of reflectarrays. The considered structures are composed by arrays of rectangular conducting patches printed on multilayer dieletric substrates, that are mounted on a ground plane. The analysis is developed in the spectral domain, using an equivalent transmission line method in combination with Galerkin method. Results for the reflection coefficient of these structures are presented and compared to those available in the literature. A good agreement was observed. Particularly, the developed analysis uses the transmission lines theory in combination with the incident potentials and the field continuity equations, at the structures interfaces, for obtaining the scattered field components expressions as function of the patch surface currents and of the incident field. Galerkin method is used to determine the unknown coefficients in the boundary value problem. Curves for the reflection coefficient of several reflectarray geometries are presented as function of frequency and of the structural parameters
Resumo:
This work presents an analysis of the annular ring microstrip antennas printed on uniaxial anisotropic substrates and with superstrate.The analysis uses the full-wave formulation by means of the Hertz vector potentials method, in the Hankel transform domain. The definition of the Hertz vector potentials and the application of the appropriate boundary conditions to the structure allow determining the dyadic Green functions, relating the current densities in the conducting patch to the transforms of the tangential electric field components. Galerkin s method is then used to obtain the matrix equation whose nontrivial solution gives the complex resonant frequency of the antenna. From the modeling, it is possible to obtain results for the resonant frequency, bandwidth and quality factor, as a function of several parameters of the antenna, for different configurations. We have considered annular ring microstrip antennas on a single dielectric layer, antennas with two anisotropic dielectric layers, and annular ring microstrip antennas on suspended substrates. Numerical results for the resonant frequency of the these structures printed on isotropic substrates are also presented and compared with those published by other authors, showing a good agreement
Análise espectral de reflectarrays com substrato de duas camadas dielétricas anisotrópicas uniaxiais
Resumo:
Recently, an amazing development has been observed in telecommunication systems. Two good examples of this development are observed in mobile communication and aerospace systems. This impressive development is related to the increasing need for receiving and transmitting communication signals. Particularly, this development has required the study of new antennas and filters. This work presents a fullwave analysis of reflectarrays. The considered structures are composed by arrays of rectangular conducting patches printed on multilayer dieletric substrates, that are mounted on a ground plane. The analysis is developed in the spectral domain, using an equivalent transmission line method in combination with Galerkin method. Results for the reflection coefficient of these structures are presented and compared to those available in the literature. A good agreement was observed. Particularly, the developed analysis uses the transmission lines theory in combination with the incident potentials and the field continuity equations, at the structures interfaces, for obtaining the scattered field components expressions as function of the patch surface currents and of the incident field. Galerkin method is used to determine the unknown coefficients in the boundary value problem. Curves for the reflection coefficient of several reflectarray geometries are presented as function of frequency and of the structural parameters
Resumo:
ABSTRACT: In this work we are concerned with the existence and uniqueness of T -periodic weak solutions for an initial-boundary value problem associated with nonlinear telegraph equations typein a domain. Our arguments rely on elliptic regularization technics, tools from classical functional analysis as well as basic results from theory of monotone operators.
Resumo:
Este trabajo presenta un método discreto para el cálculo de estabilidad hidrodinámica y análisis de sensibilidad a perturbaciones externas para ecuaciones diferenciales y en particular para las ecuaciones de Navier-Stokes compressible. Se utiliza una aproximación con variable compleja para obtener una precisión analítica en la evaluación de la matriz Jacobiana. Además, mapas de sensibilidad para la sensibilidad a las modificaciones del flujo de base y a una fuerza constante permiten identificar las regiones del campo fluido donde una modificacin (ej. fuerza puntual) tiene un efecto estabilizador del flujo. Se presentan cuatro casos de prueba: (1) un caso analítico para comprobar la derivación discreta, (2) una cavidad cerrada a bajo Reynolds para mostrar la mayor precisión en el cálculo de los valores propios con la aproximación de paso complejo, (3) flujo 2D en un cilindro circular para validar la metodología, y (4) flujo en un cavidad abierta, presentado para validar el método en casos de inestabilidades convectivamente inestables. Los tres últimos casos mencionados (2-4) se resolvieron con las ecuaciones de Navier-Stokes compresibles, utilizando un método Discontinuous Galerkin Spectral Element Method. Se obtuvo una buena concordancia para el caso de validación (3), cuando se comparó el nuevo método con resultados de la literatura. Además, este trabajo muestra que para el cálculo de los modos propios directos y adjuntos, así como para los mapas de sensibilidad, el uso de variables complejas es de suprema importancia para obtener una predicción precisa. El método descrito es aplicado al análisis para la estabilización de la estela generada por un disco actuador, que representa un modelo sencillo para hélices, rotores de helicópteros o turbinas eólicas. Se explora la primera bifurcación del flujo para un disco actuador, y se sugiere que está asociada a una inestabilidad de tipo Kelvin-Helmholtz, cuya estabilidad se controla con en el número de Reynolds y en la resistencia del disco actuador (o fuerza resistente). En primer lugar, se verifica que la disminución de la resistencia del disco tiene un efecto estabilizador parecido a una disminución del Reynolds. En segundo lugar, el análisis hidrodinmico discreto identifica dos regiones para la colocación de una fuerza puntual que controle las inestabilidades, una cerca del disco y otra en una zona aguas abajo. En tercer lugar, se muestra que la inclusión de un forzamiento localizado cerca del actuador produce una estabilización más eficiente que al forzar aguas abajo. El análisis de los campos de flujo controlados confirma que modificando el gradiente de velocidad cerca del actuador es más eficiente para estabilizar la estela. Estos resultados podrían proporcionar nuevas directrices para la estabilización de la estela de turbinas de viento o de marea cuando estén instaladas en un parque eólico y minimizar las interacciones no estacionarias entre turbinas. ABSTRACT A discrete framework for computing the global stability and sensitivity analysis to external perturbations for any set of partial differential equations is presented. In particular, a complex-step approximation is used to achieve near analytical accuracy for the evaluation of the Jacobian matrix. Sensitivity maps for the sensitivity to base flow modifications and to a steady force are computed to identify regions of the flow field where an input could have a stabilising effect. Four test cases are presented: (1) an analytical test case to prove the theory of the discrete framework, (2) a lid-driven cavity at low Reynolds case to show the improved accuracy in the calculation of the eigenvalues when using the complex-step approximation, (3) the 2D flow past a circular cylinder at just below the critical Reynolds number is used to validate the methodology, and finally, (4) the flow past an open cavity is presented to give an example of the discrete method applied to a convectively unstable case. The latter three (2–4) of the aforementioned cases were solved with the 2D compressible Navier–Stokes equations using a Discontinuous Galerkin Spectral Element Method. Good agreement was obtained for the validation test case, (3), with appropriate results in the literature. Furthermore, it is shown that for the calculation of the direct and adjoint eigenmodes and their sensitivity maps to external perturbations, the use of complex variables is paramount for obtaining an accurate prediction. An analysis for stabilising the wake past an actuator disc, which represents a simple model for propellers, helicopter rotors or wind turbines is also presented. We explore the first flow bifurcation for an actuator disc and it suggests that it is associated to a Kelvin- Helmholtz type instability whose stability relies on the Reynolds number and the flow resistance applied through the disc (or actuator forcing). First, we report that decreasing the disc resistance has a similar stabilising effect to an decrease in the Reynolds number. Second, a discrete sensitivity analysis identifies two regions for suitable placement of flow control forcing, one close to the disc and one far downstream where the instability originates. Third, we show that adding a localised forcing close to the actuator provides more stabilisation that forcing far downstream. The analysis of the controlled flow fields, confirms that modifying the velocity gradient close to the actuator is more efficient to stabilise the wake than controlling the sheared flow far downstream. An interesting application of these results is to provide guidelines for stabilising the wake of wind or tidal turbines when placed in an energy farm to minimise unsteady interactions.
Resumo:
Os escoamentos altamente convectivos representam um desafio na simulação pelo método de elementos finitos. Com a solução de elementos finitos de Galerkin para escoamentos incompressíveis, a matriz associada ao termo convectivo é não simétrica, e portanto, a propiedade de aproximação ótima é perdida. Na prática as soluções apresentam oscilações espúrias. Muitos métodos foram desenvolvidos com o fim de resolver esse problema. Neste trabalho apresentamos um método semi- Lagrangeano, o qual é implicitamente um método do tipo upwind, que portanto resolve o problema anterior, e comparamos o desempenho do método na solução das equações de convecção-difusão e Navier-Stokes incompressível com o Streamline Upwind Petrov Galerkin (SUPG), um método estabilizador de reconhecido desempenho. No SUPG, as funções de forma e de teste são tomadas em espaços diferentes, criando um efeito tal que as oscilações espúrias são drasticamente atenuadas. O método semi-Lagrangeano é um método de fator de integração, no qual o fator é um operador de convecção que se desloca para um sistema de coordenadas móveis no fluido, mas restabelece o sistema de coordenadas Lagrangeanas depois de cada passo de tempo. Isto prevê estabilidade e a possibilidade de utilizar passos de tempo maiores.Existem muitos trabalhos na literatura analisando métodos estabilizadores, mas não assim com o método semi-Lagrangeano, o que representa a contribuição principal deste trabalho: reconhecer as virtudes e as fraquezas do método semi-Lagrangeano em escoamentos dominados pelo fenômeno de convecção.
Resumo:
O presente trabalho apresenta o estudo e implementação de um algoritmo numérico para análise de escoamentos turbulentos, tridimensionais, transientes, incompressíveis e isotérmicos, através da Simulação de Grande Escalas, empregando o Método de Elementos Finitos. A modelagem matemática do problema baseia-se nas equações de conservação de massa e quantidade de movimento de um fluido quase-incompressível. Adota-se um esquema de Taylor-Galerkin, com integração reduzida e fórmulas analíticas das funções de interpolação, para o elemento hexaédrico de oito nós, com funções lineares para as componentes de velocidade e constante no elemento para a pressão. Para abordar o problema da turbulência, emprega-se a Simulação de Grandes Escalas, com modelo para escalas inferiores à resolução da malha. Foram implementados o modelo clássico de Smagorinsky e o modelo dinâmico de viscosidade turbulenta, inicialmente proposto por Germano et al, 1991. Uma nova metodologia, denominada filtragem por elementos finitos independentes, é proposta e empregada, para o processo de segunda filtragem do modelo dinâmico. O esquema, que utiliza elementos finitos independentes envolvendo cada nó da malha original, apresentou bons resultados com um baixo custo computacional adicional. São apresentados resultados para problemas clássicos, que demonstram a validade do sistema desenvolvido. A aplicabilidade do esquema utilizado, para análise de escoamentos caracterizados por elevados números de Reynolds, é discutida no capítulo final. São apresentadas sugestões para aprimorar o esquema, visando superar as dificuldades encontradas com respeito ao tempo total de processamento, para análise de escoamentos tridimensionais, turbulentos e transientes .
Resumo:
Neste trabalho apresenta-se um algoritmo para a simulação de problemas tridimensionais de interação fluido-estrutura utilizando a técnica de elementos finitos. Um esquema de Taylor-Galerkin de dois passos e elementos tetraédricos lineares são empregados para o fluido, que pode ser compressível ou incompressível. É adotada uma formulação lagrangeana-euleriana arbitrária (ALE), compatível com o movimento da interface fluidoestrutura. Um método ftacionado de correção de velocidade é utilizado para os fluidos incompressíveis. A estrutura é analisada usando elementos triangulares com três nós e seis graus de liberdade por nó (três componentes de deslocamentos e três componentes de rotação). Os efeitos da não-linearidade geométrica são incluídos. O método de Newmark é empregado para integrar no tempo as equações dinâmicas de equilíbrio, usando-se uma descrição lagrangeana atualizada. O sistema de equações alge'bricas é solucionado através do método dos gradientes conjugados e o sistema não-linear, resultante de deslocamentos e rotacões finitas da estrutura, é solucionado com um esquema incremental-iterativo. O código é otimizado para aproveitar as vantagens do processamento vetorial.
Resumo:
This work presents a theoretical and numerical analysis of Frequency Selective Surfaces (FSS) with elements as rectangular patch, thin dipole and crossed dipole mounted on uniaxial anisotropic dielectric substrate layers for orientations of the optical axis along x, y and z directions. The analysis of these structures is accomplished by combination of the Hertz vector potentials method and the Galerkin's technique, in the Fourier transform-domain, using entire¬domain basis functions. This study consists in the use of one more technique for analysis of FSS on anisotropic dielectric substrate. And presents as the main contribution the introduction of one more project parameter to determinate the transmission and reflection characteristics of periodic structures, from the use of anisotropic dielectric with orientations of the crystal optical axis along x, y and z directions. To validate this analysis, the numerical results of this work are compared to those obtained by other authors, for FSS structures on anisotropic and isotropic dielectric substrates. Also are compared experimental results and the numerical correspondent ones for the FSS isotropic case. The technique proposed in this work is accurate and efficient. ln a second moment, curves are presented for the transmission and reflection characteristics of the FSS structures using conducting patch elements mounted on uniaxial anisotropic dielectric substrate layers with optical axis oriented along x, y and z directions. From analysis of these curves, the performance of the considered FSS structures as function of the optical axis orientation is described
Resumo:
The topology optimization problem characterize and determine the optimum distribution of material into the domain. In other words, after the definition of the boundary conditions in a pre-established domain, the problem is how to distribute the material to solve the minimization problem. The objective of this work is to propose a competitive formulation for optimum structural topologies determination in 3D problems and able to provide high-resolution layouts. The procedure combines the Galerkin Finite Elements Method with the optimization method, looking for the best material distribution along the fixed domain of project. The layout topology optimization method is based on the material approach, proposed by Bendsoe & Kikuchi (1988), and considers a homogenized constitutive equation that depends only on the relative density of the material. The finite element used for the approach is a four nodes tetrahedron with a selective integration scheme, which interpolate not only the components of the displacement field but also the relative density field. The proposed procedure consists in the solution of a sequence of layout optimization problems applied to compliance minimization problems and mass minimization problems under local stress constraint. The microstructure used in this procedure was the SIMP (Solid Isotropic Material with Penalty). The approach reduces considerably the computational cost, showing to be efficient and robust. The results provided a well defined structural layout, with a sharpness distribution of the material and a boundary condition definition. The layout quality was proporcional to the medium size of the element and a considerable reduction of the project variables was observed due to the tetrahedrycal element
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
In this work a p-adaptation (modification of the polynomial order) strategy based on the minimization of the truncation error is developed for high order discontinuous Galerkin methods. The truncation error is approximated by means of a truncation error estimation procedure and enables the identification of mesh regions that require adaptation. Three truncation error estimation approaches are developed and termed a posteriori, quasi-a priori and quasi-a priori corrected. Fine solutions, which are obtained by enriching the polynomial order, are required to solve the numerical problem with adequate accuracy. For the three truncation error estimation methods the former needs time converged solutions, while the last two rely on non-converged solutions, which lead to faster computations. Based on these truncation error estimation methods, algorithms for mesh adaptation were designed and tested. Firstly, an isotropic adaptation approach is presented, which leads to equally distributed polynomial orders in different coordinate directions. This first implementation is improved by incorporating a method to extrapolate the truncation error. This results in a significant reduction of computational cost. Secondly, the employed high order method permits the spatial decoupling of the estimated errors and enables anisotropic p-adaptation. The incorporation of anisotropic features leads to meshes with different polynomial orders in the different coordinate directions such that flow-features related to the geometry are resolved in a better manner. These adaptations result in a significant reduction of degrees of freedom and computational cost, while the amount of improvement depends on the test-case. Finally, this anisotropic approach is extended by using error extrapolation which leads to an even higher reduction in computational cost. These strategies are verified and compared in terms of accuracy and computational cost for the Euler and the compressible Navier-Stokes equations. The main result is that the two quasi-a priori methods achieve a significant reduction in computational cost when compared to a uniform polynomial enrichment. Namely, for a viscous boundary layer flow, we obtain a speedup of a factor of 6.6 and 7.6 for the quasi-a priori and quasi-a priori corrected approaches, respectively. RESUMEN En este trabajo se ha desarrollado una estrategia de adaptación-p (modificación del orden polinómico) para métodos Galerkin discontinuo de alto orden basada en la minimización del error de truncación. El error de truncación se estima utilizando el método tau-estimation. El estimador permite la identificación de zonas de la malla que requieren adaptación. Se distinguen tres técnicas de estimación: a posteriori, quasi a priori y quasi a priori con correción. Todas las estrategias requieren una solución obtenida en una malla fina, la cual es obtenida aumentando de manera uniforme el orden polinómico. Sin embargo, mientras que el primero requiere que esta solución esté convergida temporalmente, el resto utiliza soluciones no convergidas, lo que se traduce en un menor coste computacional. En este trabajo se han diseñado y probado algoritmos de adaptación de malla basados en métodos tau-estimation. En primer lugar, se presenta un algoritmo de adaptacin isótropo, que conduce a discretizaciones con el mismo orden polinómico en todas las direcciones espaciales. Esta primera implementación se mejora incluyendo un método para extrapolar el error de truncación. Esto resulta en una reducción significativa del coste computacional. En segundo lugar, el método de alto orden permite el desacoplamiento espacial de los errores estimados, permitiendo la adaptación anisotropica. Las mallas obtenidas mediante esta técnica tienen distintos órdenes polinómicos en cada una de las direcciones espaciales. La malla final tiene una distribución óptima de órdenes polinómicos, los cuales guardan relación con las características del flujo que, a su vez, depenen de la geometría. Estas técnicas de adaptación reducen de manera significativa los grados de libertad y el coste computacional. Por último, esta aproximación anisotropica se extiende usando extrapolación del error de truncación, lo que conlleva un coste computational aún menor. Las estrategias se verifican y se comparan en téminors de precisión y coste computacional utilizando las ecuaciones de Euler y Navier Stokes. Los dos métodos quasi a priori consiguen una reducción significativa del coste computacional en comparación con aumento uniforme del orden polinómico. En concreto, para una capa límite viscosa, obtenemos una mejora en tiempo de computación de 6.6 y 7.6 respectivamente, para las aproximaciones quasi-a priori y quasi-a priori con corrección.