890 resultados para Light gauge steel roofing systems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cold-formed steel stud walls are an important component of Light Steel Framing (LSF) building systems used in commercial, industrial and residential buildings. In the conventional LSF stud wall systems, thin-walled steel studs are protected from fire by placing one or two layers of plasterboard on both sides with or without cavity insulation. However, there is very limited data about the structural and thermal performance of these wall systems while past research showed contradicting results about the benefits of cavity insulation. This research proposed a new LSF stud wall system in which a composite panel made of two plasterboards with insulation between them was used to improve the fire rating of walls. Full scale fire tests were conducted using both conventional steel stud walls with and without the use of cavity insulation and the new composite panel system. Eleven full scale load bearing wall specimens were tested to study the thermal and structural performances of the load bearing wall assemblies under standard fire conditions. These tests showed that the use of cavity insulation led to inferior fire performance of walls while also providing good explanations and supporting test data to overcome the incorrect industry assumptions about cavity insulation. Tests demonstrated that the use of external insulation in a composite panel form enhanced the thermal and structural performances of stud walls and increased their fire resistance rating significantly. This paper presents the details of the full scale fire tests of load-bearing wall assemblies lined with plasterboards and different types of insulation under varying load ratios. Test results including the temperature and deflection profiles of walls measured during the fire tests will be presented along with their failure modes and failure times.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fire safety of buildings has been recognised as very important by the building industry and the community at large. Traditionally, increased fire rating is provided by simply adding more plasterboards to light gauge steel frame (LSF) walls, which is inefficient. Many research studies have been undertaken to investigate the thermal behaviour of traditional LSF stud wall systems under standard fire conditions. However, no research has been undertaken on the thermal behaviour of LSF stud walls using the recently proposed composite panel. Extensive fire testing of both non-load bearing and load bearing wall panels was conducted in this research based on the standard time-temperature curve in AS1530.4. Three groups of LSF wall specimens were tested with no insulation, cavity insulation and the new composite panel based on an external insulation layer between plasterboards. This paper presents the details of this experimental study into the thermal performance of non-load bearing walls lined with various configurations of plasterboard and insulation. Extensive descriptive and numerical results of the tested non-load bearing wall panels given in this paper provide a thorough understanding of their thermal behaviour, and valuable time-temperature data that can be used to validate numerical models. Test results showed that the innovative composite stud wall systems outperformed the traditional stud wall systems in terms of their thermal performance, giving a much higher fire rating.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Light Gauge Steel Framing (LSF) walls made of cold-formed and thin-walled steel lipped channel studs with plasterboard linings on both sides are commonly used in commercial, industrial and residential buildings. However, there is limited data about their structural and thermal performance under fire conditions while past research showed contradicting results about the benefits of using cavity insulation. A new composite wall panel was recently proposed to improve the fire resistance rating of LSF walls, where an insulation layer was used externally between the plasterboards on both sides of the wall frame instead of using it in the cavity. In this research 11 full scale tests were conducted on conventional load bearing steel stud walls with and without cavity insulation, and the new composite panel system to study their thermal and structural performance under standard fire conditions. These tests showed that the use of cavity insulation led to inferior fire performance of walls, and provided supporting research data. They demonstrated that the use of insulation externally in a composite panel enhanced the thermal and structural performance of LSF walls and increased their fire resistance rating. This paper presents the details of the LSF wall tests and the thermal and structural performance data and fire resistance rating of load-bearing wall assemblies lined with varying plasterboard-insulation configurations under two different load ratios. Fire test results including the time–temperature and deflection profiles are presented along with the failure times and modes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Light Gauge Steel Framing (LSF) walls are made of cold-formed, thin-walled steel lipped channel studs with plasterboard linings on both sides. However, these thin-walled steel sections heat up quickly and lose their strength under fire conditions despite the protection provided by plasterboards. A new composite wall panel was recently proposed to improve the fire resistance rating of LSF walls, where an insulation layer was used externally between the plasterboards on both sides of the wall frame instead of using it in the cavity. A research study using both fire tests and numerical studies was undertaken to investigate the structural and thermal behaviour of load bearing LSF walls made of both conventional and the new composite panels under standard fire conditions and to determine their fire resistance rating. This paper presents the details of finite element models of LSF wall studs developed to simulate the structural performance of LSF wall panels under standard fire conditions. Finite element analyses were conducted under both steady and transient state conditions using the time-temperature profiles measured during the fire tests. The developed models were validated using the fire test results of 11 LSF wall panels with various plasterboard/insulation configurations and load ratios. They were able to predict the fire resistance rating within five minutes. The use of accurate numerical models allowed the inclusion of various complex structural and thermal effects such as local buckling, thermal bowing and neutral axis shift that occurred in thin-walled steel studs under non-uniform elevated temperature conditions. Finite element analyses also demonstrated the improvements offered by the new composite panel system over the conventional cavity insulated system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Light gauge steel frame wall systems are commonly used in industrial and commercial buildings, and there is a need for simple fire design rules to predict their load capacities and fire resistance ratings. During fire events, the light gauge steel frame wall studs are subjected to non-uniform temperature distributions that cause thermal bowing, neutral axis shift and magnification effects and thus resulting in a combined axial compression and bending action on the studs. In this research, a series of full-scale fire tests was conducted first to evaluate the performance of light gauge steel frame wall systems with eight different wall configurations under standard fire conditions. Finite element models of light gauge steel frame walls were then developed, analysed under transient and steady-state conditions and validated using full-scale fire tests. Using the results from fire tests and finite element analyses, a detailed investigation was undertaken into the prediction of axial compression strength and failure times of light gauge steel frame wall studs in standard fires using the available fire design rules based on Australian, American and European standards. The results from both fire tests and finite element analyses were used to investigate the ability of these fire design rules to include the complex effects of non-uniform temperature distributions and their accuracy in predicting the axial compression strength of wall studs and the failure times. Suitable modifications were then proposed to the fire design rules. This article presents the details of this investigation on the fire design rules of light gauge steel frame walls and the results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traditionally the fire resistance rating of LSF wall systems is based on approximate prescriptive methods developed using limited fire tests. Therefore a detailed research study into the performance of load bearing LSF wall systems under standard fire conditions was undertaken to develop improved fire design rules. It used the extensive fire performance results of eight different LSF wall systems from a series of full scale fire tests and numerical studies for this purpose. The use of previous fire design rules developed for LSF walls subjected to non-uniform elevated temperature distributions based on AISI design manual and Eurocode3 Parts 1.2 and 1.3 was investigated first. New simplified fire design rules based on AS/NZS 4600, North American Specification and Eurocode 3 Part 1.3 were then proposed in this study with suitable allowances for the interaction effects of compression and bending actions. The importance of considering thermal bowing, magnified thermal bowing and neutral axis shift in the fire design was also investigated. A spread sheet based design tool was developed based on the new design rules to predict the failure load ratio versus time and temperature curves for varying LSF wall configurations. The accuracy of the proposed design rules was verified using the test and FEA results for different wall configurations, steel grades, thicknesses and load ratios. This paper presents the details and results of this study including the improved fire design rules for predicting the load capacity of LSF wall studs and the failure times of LSF walls under standard fire conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traditionally, the fire resistance rating of Light gauge steel frame (LSF) wall systems is based on approximate prescriptive methods developed using limited fire tests. These fire tests are conducted using standard fire time-temperature curve given in ISO 834. However, in recent times fire has become a major disaster in buildings due to the increase in fire loads as a result of modern furniture and lightweight construction, which make use of thermoplastics materials, synthetic foams and fabrics. Therefore a detailed research study into the performance of load bearing LSF wall systems under both standard and realistic design fires on one side was undertaken to develop improved fire design rules. This study included both full scale fire tests and numerical studies of eight different LSF wall systems conducted for both the standard fire curve and the recently developed realistic design fire curves. The use of previous fire design rules developed for LSF walls subjected to non-uniform elevated temperature distributions based on AISI design manual and Eurocode 3 Parts 1.2 and 1.3 was investigated first. New simplified fire design rules based on AS/NZS 4600, North American Specification and Eurocode 3 Part 1.3 were then proposed with suitable allowances for the interaction effects of compression and bending actions. The importance of considering thermal bowing, magnified thermal bowing and neutral axis shift in the fire design was also investigated and their effects were included. A spread sheet based design tool was developed based on the new design rules to predict the failure load ratio versus time and temperature curves for varying LSF wall configurations. The accuracy of the proposed design rules was verified using the fire test and finite element analysis results for various wall configurations, steel grades, thicknesses and load ratios under both standard and realistic design fire conditions. A simplified method was also proposed to predict the fire resistance rating of LSF walls based on two sets of equations developed for the load ratio-hot flange temperature and the time-temperature relationships. This paper presents the details of this study on LSF wall systems under fire conditions and the results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fire safety design of building structures has received greater attention in recent times due to continuing loss of properties and lives during fires. However, fire performance of light gauge cold-formed steel structures is not well understood despite its increased usage in buildings. Cold-formed steel compression members are susceptible to various buckling modes such as local and distortional buckling and their ultimate strength behaviour is governed by these buckling modes. Therefore a research project based on experimental and numerical studies was undertaken to investigate the distortional buckling behaviour of light gauge cold-formed steel compression members under simulated fire conditions. Lipped channel sections with and without additional lips were selected with three thicknesses of 0.6, 0.8, and 0.95 mm and both low and high strength steels (G250 and G550 steels). More than 150 compression tests were undertaken first at ambient and elevated temperatures. Finite element models of the tested compression members were then developed by including the degradation of mechanical properties with increasing temperatures. Comparison of finite element analysis and experimental results showed that the developed finite element models were capable of simulating the distortional buckling and strength behaviour at ambient and elevated temperatures up to 800 °C. The validated model was used to determine the effects of mechanical properties, geometric imperfections and residual stresses on the distortional buckling behaviour and strength of cold-formed steel columns. This paper presents the details of the numerical study and the results. It demonstrated the importance of using accurate mechanical properties at elevated temperatures in order to obtain reliable strength characteristics of cold-formed steel columns under fire conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently an innovative composite panel system was developed, where a thin insulation layer was used externally between two plasterboards to improve the fire performance of light gauge cold-formed steel frame walls. In this research, finite-element thermal models of both the traditional light gauge cold-formed steel frame wall panels with cavity insulation and the new light gauge cold-formed steel frame composite wall panels were developed to simulate their thermal behaviour under standard and realistic fire conditions. Suitable apparent thermal properties of gypsum plasterboard, insulation materials and steel were proposed and used. The developed models were then validated by comparing their results with available fire test results. This article presents the details of the developed finite-element models of small-scale non-load-bearing light gauge cold-formed steel frame wall panels and the results of the thermal analysis. It has been shown that accurate finite-element models can be used to simulate the thermal behaviour of small-scale light gauge cold-formed steel frame walls with varying configurations of insulations and plasterboards. The numerical results show that the use of cavity insulation was detrimental to the fire rating of light gauge cold-formed steel frame walls, while the use of external insulation offered superior thermal protection to them. The effects of real fire conditions are also presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent times, light gauge cold-formed steel sections have been used extensively as primary load bearing structural members in many applications in the building industry. Fire safety design of structures using such sections has therefore become more important. Deterioration of mechanical properties of yield stress and elasticity modulus is considered the most important factor affecting the performance of steel structures in fires. Hence there is a need to fully understand the mechanical properties of light gauge cold-formed steels at elevated temperatures. A research project based on experimental studies was therefore undertaken to investigate the deterioration of mechanical properties of light gauge cold-formed steels. Tensile coupon tests were undertaken to determine the mechanical properties of these steels made of both low and high strength steels and thicknesses of 0.60, 0.80 and 0.95 mm at temperatures ranging from 20 to 800ºC. Test results showed that the currently available reduction factors are unsafe to use in the fire safety design of cold-formed steel structures. Therefore new predictive equations were developed for the mechanical properties of yield strength and elasticity modulus at elevated temperatures. This paper presents the details of the experimental study, and the results including the developed equations. It also includes details of a stress-strain model for light gauge cold-formed steels at elevated temperatures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fire design is an essential part of the overall design procedure of structural steel members and systems. Conventionally, increased fire rating is provided simply by adding more plasterboards to Light gauge Steel Frame (LSF) stud walls, which is inefficient. However, recently Kolarkar & Mahendran (2008) developed a new composite wall panel system, where the insulation was located externally between the plasterboards on both sides of the steel wall frame. Numerical and experimental studies were undertaken to investigate the structural and fire performance of LSF walls using the new composite panels under axial compression. This paper presents the details of the numerical studies of the new LSF walls and the results. It also includes brief details of the experimental studies. Experimental and numerical results were compared for the purpose of validating the developed numerical model. The paper also describes the structural and fire performance of the new LSF wall system in comparison to traditional wall systems using cavity insulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fire safety has become an important part in structural design due to the ever increasing loss of properties and lives during fires. Conventionally the fire rating of load bearing wall systems made of Light gauge Steel Frames (LSF) is determined using fire tests based on the standard time-temperature curve given in ISO 834 (ISO, 1999). The standard time-temperature curve given in ISO 834 (ISO, 1999) originated from the application of wood burning furnaces in the early 1900s. However, modern commercial and residential buildings make use of thermoplastic materials, which mean considerably high fuel loads. Hence a detailed fire research study into the performance of LSF walls was undertaken using the developed real fire curves based on Eurocode parametric curves (ECS, 2002) and Barnett’s BFD curves (Barnett, 2002) using both full scale fire tests and numerical studies. It included LSF walls without any insulation, and the recently developed externally insulated composite panel system. This paper presents the details of the numerical studies and the results. It also includes brief details of the development of real building fire curves and experimental studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract. Fire resistance has become an important part in structural design due to the ever increasing loss of properties and lives every year. Conventionally the fire rating of load bearing Light gauge Steel Frame (LSF) walls is determined using standard fire tests based on the time-temperature curve given in ISO 834 [1]. Full scale fire testing based on this standard time-temperature curve originated from the application of wood burning furnaces in the early 1900s and it is questionable whether it truly represents the fuel loads in modern buildings. Hence a detailed fire research study into the performance of LSF walls was undertaken using real design fires based on Eurocode parametric curves [2] and Barnett’s ‘BFD’ curves [3]. This paper presents the development of these real fire curves and the results of full scale experimental study into the structural and fire behaviour of load bearing LSF stud wall systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fire safety has become an important part in structural design due to the ever increasing loss of properties and lives during fires. Fire rating of load bearing wall systems made of Light gauge Steel Frames (LSF) is determined using fire tests based on the standard time-temperature curve given in ISO 834. However, modern residential buildings make use of thermoplastic materials, which mean considerably high fuel loads. Hence a detailed fire research study into the performance of load bearing LSF walls was undertaken using a series of realistic design fire curves developed based on Eurocode parametric curves and Barnett’s BFD curves. It included both full scale fire tests and numerical studies of LSF walls without any insulation, and the recently developed externally insulated composite panels. This paper presents the details of fire tests first, and then the numerical models of tested LSF wall studs. It shows that suitable finite element models can be developed to predict the fire rating of load bearing walls under real fire conditions. The paper also describes the structural and fire performances of externally insulated LSF walls in comparison to the non-insulated walls under real fires, and highlights the effects of standard and real fire curves on fire performance of LSF walls.