914 resultados para Level of processing
Resumo:
We have applied functional MRI (fMRI) based on blood oxygenation level-dependent (BOLD) image-contrast to map odor-elicited olfactory responses at the laminar level in the rat olfactory bulb (OB) elicited by iso-amyl acetate (10−2 dilution of saturated vapor) with spatial and temporal resolutions of 220×220×1,000 μm and 36 s. The laminar structure of the OB was clearly depicted by high-resolution in vivo anatomical MRI with spatial resolution of 110×110×1,000 μm. In repeated BOLD fMRI measurements, highly significant (P < 0.001) foci were located in the outer layers of both OBs. The occurrence of focal OB activity within a domain at the level of individual glomeruli or groups of glomeruli was corroborated on an intra- and inter-animal basis under anesthetized conditions with this noninvasive method. The dynamic studies demonstrated that the odor-elicited BOLD activations were highly reproducible on a time scale of minutes, whereas over tens of minutes the activations sometimes varied slowly. We found large BOLD signal (ΔS/S = 10–30%) arising from the olfactory nerve layer, which is devoid of synapses and composed of unmyelinated fibers and glial cells. Our results support previous studies with other methods showing that odors elicit activity within glomerular layer domains in the mammalian OB, and extend the analysis to shorter time periods at the level of individual glomeruli or groups of glomeruli. With further improvement, BOLD fMRI should be ideal for systematic analysis of the functional significance of individual glomeruli in olfactory information encoding and of spatiotemporal processing within the olfactory system.
Resumo:
Feature selection is important in medical field for many reasons. However, selecting important variables is a difficult task with the presence of censoring that is a unique feature in survival data analysis. This paper proposed an approach to deal with the censoring problem in endovascular aortic repair survival data through Bayesian networks. It was merged and embedded with a hybrid feature selection process that combines cox's univariate analysis with machine learning approaches such as ensemble artificial neural networks to select the most relevant predictive variables. The proposed algorithm was compared with common survival variable selection approaches such as; least absolute shrinkage and selection operator LASSO, and Akaike information criterion AIC methods. The results showed that it was capable of dealing with high censoring in the datasets. Moreover, ensemble classifiers increased the area under the roc curves of the two datasets collected from two centers located in United Kingdom separately. Furthermore, ensembles constructed with center 1 enhanced the concordance index of center 2 prediction compared to the model built with a single network. Although the size of the final reduced model using the neural networks and its ensembles is greater than other methods, the model outperformed the others in both concordance index and sensitivity for center 2 prediction. This indicates the reduced model is more powerful for cross center prediction.
Resumo:
Circulation CD4(+)CD25(+)FoxP3(+) regulatory T cells (Tregs) have been associated with the delicate balancing between control of overwhelming acute malaria infection and prevention of immune pathology due to disproportionate inflammatory responses to erythrocytic stage of the parasite. While the role of Tregs has been well-documented in murine models and P. falciparum infection, the phenotype and function of Tregs in P. vivax infection is still poorly characterized. In the current study, we demonstrated that patients with acute P. vivax infection presented a significant augmentation of circulating Tregs producing anti-inflammatory (IL-10 and TGF-beta) as well as pro-inflammatory (IFN-gamma, IL-17) cytokines, which was further positively correlated with parasite burden. Surface expression of GITR molecule and intracellular expression of CTLA-4 were significantly upregulated in Tregs from infected donors, presenting also a positive association between either absolute numbers of CD4(+)CD25(+)FoxP3(+)GITR(+) or CD4(+)CD25(+)FoxP3(+)CTLA-4(+) and parasite load. Finally, we demonstrate a suppressive effect of Treg cells in specific T cell proliferative responses of P. vivax infected subjects after antigen stimulation with Pv-AMA-1. Our findings indicate that malaria vivax infection lead to an increased number of activated Treg cells that are highly associated with parasite load, which probably exert an important contribution to the modulation of immune responses during P. vivax infection.
Resumo:
The aims of this study were to evaluate whether air pollution during pre-natal and post-natal phases change habituation and short-term discriminative memories and if oxidants are involved in this process. As secondary objectives, it was to evaluate if the change of filtered to nonfiltered environment could protect the cortex of rats against oxidative stress as well as to modify the behavior of these animals. Wistar, male rats were divided into four groups (n = 12/group): pre and post-natal exposure until adulthood to filtered air (FA); pre-natal period to nonfiltered air (NFA-FA); until (21st post-natal day) and post-natal to filtered air until adulthood (PND21); prenatal to filtered air until PND21 and post-natal to nonfiltered air until adulthood (FA-NFA); pre and post-natal to nonfiltered air (NFA). After 150 days of air pollution exposure, animals were tested in the spontaneous object recognition test to evaluate short-term discriminative and habituation memories. Rats were euthanized; blood was collected for metal determination; cortex dissected for oxidative stress evaluation. There was a significant increase in malondialdehyde (MDA) levels in the NFA group when compared to other groups (FA: 1.730 +/- 0.217; NFA-FA: 1.101 +/- 0.217; FA-NFA: 1.014 +/- 0.300; NFA: 5.978 +/- 1.920 nmol MDA/mg total proteins; p = 0.007). NFA group presented a significant decrease in short-term discriminative (FA: 0.603 +/- 0.106; NFA-FA: 0.669 +/- 0.0666; FA-NFA: 0.374 +/- 0.178; NFA: -0.00631 +/- 0.106 sec; p = 0.006) and an improvement in habituation memories when compared to other groups. Therefore, exposure to air pollution during both those periods impairs short-term discriminative memory and cortical oxidative stress may mediate this process.
Resumo:
An increased degree of utilization of the potential N-glycosylation site In the fourth repeat unit of the human tau protein may be involved in the inability of tau to bind to the corresponding tubulin sequence(s) and in the subsequent development of the paired helical filaments of Alzheimer's disease. To model these processes, we synthesized the octadecapeptide spanning this region without sugar, and with the addition of an N-acetyl-glucosamine moiety. The carbohydrate-protected, glycosylated asparagine was incorporated as a building block during conventional Fmoc-solid phase peptide synthesis. While the crude non-glycosylated analog was obtained as a single peptide, two peptides with, the identical, expected masses, in approximately equal amounts, were detected after the cleavage of the peracetylated glycopeptide. Surprisingly, the two glycopeptides switched positions on the reversed-phase high performance liquid chromatogram after removal of the sugar-protecting acetyl groups. Nuclear magnetic resonance spectroscopy and peptide sequencing identified the more hydrophobic deprotected peak as the target peptide, and the more hydrophilic deprotected peak as a peptide analog in which the aspartic acid-bond just preceding the glycosylated asparagine residue was isomerized resulting in the formation of a beta-peptide. The anomalous chromatographic behavior of the acetylated beta-isomer could be explained on the basis of the generation of an extended hydrophobic surface which is not present in any of the other three glycopeptide variants. Repetition of the syntheses, with altered conditions and reagents, revealed reproducibly high levels of aspartic acid-bond isomerization of the glycopeptide as well as lack of isomerization for the non-glycosylated parent analog. If similar increased aspartic acid-bond isomerization occurs in vivo, a protein modification well known to take place for both the amyloid deposits and the neurofibrillary tangles in Alzheimer's disease, this process may explain the aggregation of glycosylated tau into the paired helical filaments in the affected brains. Copyright (C) 1999 European Peptide Society and John Wiley & Sons, Ltd.
Resumo:
Proteomic approaches have been useful for the identification of aberrantly expressed proteins in complex diseases such as cancer. These proteins are not only potential disease biomarkers, but also targets for therapy. The aim of this study was to identify differentially expressed proteins in diffuse astrocytoma grade II, anaplastic astrocytoma grade III and glioblastoma multiforme grade IV in human tumor samples and in non-neoplastic brain tissue as control using 2-DE and MS. Tumor and control brain tissue dissection was guided by histological hematoxylin/eosin tissue sections to provide more than 90% of tumor cells and astrocytes. Six proteins were detected as up-regulated in higher grade astrocytomas and the most important finding was nucleophosmin (NPM) (p < 0.05), whereas four proteins were down-regulated, among them raf kinase inhibitor protein (RKIP) (p < 0.05). We report here for the first time the alteration of NPM and RKIP expression in brain cancer. Our focus on these proteins was due to the fact that they are involved in the PI3K/AKT/mTOR and RAS/RAF/MAPK pathways, known for their contribution to the development and progression of gliomas. The proteomic data for NPM and RKIP were confirmed by Western blot, quantitative real-time PCR and immunohistochemistry. Due to the participation of NPM and RKIP in uncontrolled proliferation and evasion of apoptosis, these proteins are likely targets for drug development.
Resumo:
Background. The live attenuated yellow fever (YF) vaccines have been available for decades and are considered highly effective and one of the safest vaccines worldwide. Methods. The impact of YF-17DD-antigens recall on cytokine profiles of YF-17DD-vaccinated children were characterized using short-term cultures of whole blood samples and single-cell flow cytometry. This study enrolled seroconverters and nonseroconverters after primovaccination (PV-PRNT(+) and PV-PRNT(-)), seroconverters after revaccination (RV-PRNT(+)), and unvaccinated volunteers (UV-PRNT(-)). Results. The analysis demonstrated in the PV-PRNT(+) group a balanced involvement of pro-inflammatory/regulatory adaptive immunity with a prominent participation of innate immunity pro-inflammatory events (IL-12(+) and TNF-alpha(+) NEU and MON). Using the PV-PRNT(+) cytokine signature as a reference profile, PV-PRNT(+) presented a striking lack of innate immunity proinflammatory response along with an increased adaptive regulatory profile (IL-4(+) CD4(+) T cells and IL-10(+) and IL-5(+) CD8(+) T cells). Conversely, the RV-PRNT(+) shifted the overall cytokine signatures toward an innate immunity pro-inflammatory profile and restored the adaptive regulatory response. Conclusions. The data demonstrated that the overall cytokine signature was associated with the levels of PRNT antibodies with a balanced innate/adaptive immunity with proinflammatory/regulatory profile as the hallmark of PV-PRNT(MEDIUM+), whereas a polarized regulatory response was observed in PV-PRNT(-) and a prominent proinflammatory signature was the characteristic of PV-PRNT(HIGH+).
Resumo:
Previous work has suggested that decrement in both processing speed and working memory span plays a role in the memory impairment observed in patients with schizophrenia. We undertook a study to examine simultaneously the effect of these two factors. A sample of 49 patients with schizophrenia and 43 healthy controls underwent a battery of verbal and visual memory tasks. Superficial and deep encoding memory measures were tallied. We conducted regression analyses on the various memory measures, using processing speed and working memory span as independent variables. In the patient group, processing speed was a significant predictor of superficial and deep memory measures in verbal and visual memory. Working memory span was an additional significant predictor of the deep memory measures only. Regression analyses involving all participants revealed that the effect of diagnosis on all the deep encoding memory measures was reduced to non-significance when processing speed was entered in the regression. Decreased processing speed is involved in verbal and visual memory deficit in patients, whether the task require superficial or deep encoding. Working memory is involved only insofar as the task requires a certain amount of effort. (JINS, 2011, 17, 485-493)
Resumo:
Objective. To investigate the processing induced particle alignment on fracture behavior of four multiphase dental ceramics (one porcelain, two glass-ceramics and a glass-infiltrated-alumina composite). Methods. Disks (empty set12mm x 1.1 mm-thick) and bars (3 mm x 4 mm x 20 mm) of each material were processed according to manufacturer instructions, machined and polished. Fracture toughness (K(IC)) was determined by the indentation strength method using 3-point bending and biaxial flexure fixtures for the fracture of bars and disks, respectively. Microstructural and fractographic analyses were performed with scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. Results. The isotropic microstructure of the porcelain and the leucite-based glass-ceramic resulted in similar fracture toughness values regardless of the specimen geometry. On the other hand, materials containing second-phase particles with high aspect ratio (lithium disilicate glass-ceramic and glass-infiltrated-alumina composite) showed lower fracture toughness for disk specimens compared to bars. For the lithium disilicate glass-ceramic disks, it was demonstrated that the occurrence of particle alignment during the heat-pressing procedure resulted in an unfavorable pattern that created weak microstructural paths during the biaxial test. For the glass-infiltrated-alumina composite, the microstructural analysis showed that the large alumina platelets tended to align their large surfaces perpendicularly to the direction of particle deposition during slip casting of green preforms. Significance. The fracture toughness of dental ceramics with anisotropic microstructure should be determined by means of biaxial testing, since it results in lower values. (C) 2009 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
A genetic linkage map of mungbean (Vigna radiata, 2n = 2x = 22) consisting of 255 RFLP loci was developed using a recombinant inbred population of 80 individuals. The population was derived from an intersubspecific cross between the cultivated mungbean variety 'Berken' and a wild mungbean genotype 'ACC 41' (V radiata subsp. sublobata). The total length of the map, which comprised 13 linkage groups, spanned 737.9 cM with an average distance between markers of 3.0 cM and a maximum distance between linked markers of 15.4 cM. The mungbean map was compared to a previously published map of lablab (Lablab purpureus, 2n = 2x = 24) using a common set of 65 RFLP probes. In contrast to some other comparative mapping studies among members of the Fabaceae, where a high level of chromosomal rearrangement has been observed, marker order between mungbean and lablab was found to be highly conserved. However, the two genomes have apparently accumulated a large number of duplications/deletions after they diverged.