948 resultados para Laplace transforms
Resumo:
Exercises and solutions in LaTex
Resumo:
Exercises and solutions in LaTex
Resumo:
Exercises and solutions in PDF
Resumo:
Exercises and solutions in LaTex
Resumo:
Exam questions and solutions in LaTex. Diagrams for the questions are all together in the support.zip file, as .eps files
Resumo:
Exercises and solutions in PDF
Resumo:
Exercises and solutions in PDF
Resumo:
Exam questions and solutions in PDF
Resumo:
Exam and solutions in LaTex
Resumo:
Exam and solutions in PDF
Resumo:
Exercises and solutions in LaTex
Resumo:
The MATH2038 (Partial Differential Equations) course, as given in semester 2 2008/9. Syllabus has changed slightly from previous years, as has coursework weighting.
Resumo:
The fractional generalized Langevin equation (FGLE) is proposed to discuss the anomalous diffusive behavior of a harmonic oscillator driven by a two-parameter Mittag-Leffler noise. The solution of this FGLE is discussed by means of the Laplace transform methodology and the kernels are presented in terms of the three-parameter Mittag-Leffler functions. Recent results associated with a generalized Langevin equation are recovered.
Resumo:
In this study, a given quasilinear problem is solved using variational methods. In particular, the existence of nontrivial solutions for GP is examined using minimax methods. The main theorem on the existence of a nontrivial solution for GP is detailed.
Resumo:
We establish a Green-Nagdhi model equation for capillary-gravity waves in (2+1) dimensions. Through the derivation of an asymptotic equation governing short-wave dynamics, we show that this system possesses (1 + 1) traveling-wave solutions for almost all the values of the Bond number θ (the special case θ=1/3 is not studied). These waves become singular when their amplitude is larger than a threshold value, related to the velocity of the wave. The limit angle at the crest is then calculated. The stability of a wave train is also studied via a Benjamin-Feir modulational analysis. ©2005 The American Physical Society.