902 resultados para Knowledge-doing networks
Resumo:
This work describes a methodology to extract symbolic rules from trained neural networks. In our approach, patterns on the network are codified using formulas on a Lukasiewicz logic. For this we take advantage of the fact that every connective in this multi-valued logic can be evaluated by a neuron in an artificial network having, by activation function the identity truncated to zero and one. This fact simplifies symbolic rule extraction and allows the easy injection of formulas into a network architecture. We trained this type of neural network using a back-propagation algorithm based on Levenderg-Marquardt algorithm, where in each learning iteration, we restricted the knowledge dissemination in the network structure. This makes the descriptive power of produced neural networks similar to the descriptive power of Lukasiewicz logic language, minimizing the information loss on the translation between connectionist and symbolic structures. To avoid redundance on the generated network, the method simplifies them in a pruning phase, using the "Optimal Brain Surgeon" algorithm. We tested this method on the task of finding the formula used on the generation of a given truth table. For real data tests, we selected the Mushrooms data set, available on the UCI Machine Learning Repository.
Resumo:
The objective of this paper is to measure the impact of different kinds of knowledge and external economies on urban growth in an intraregional context. The main hypothesis is that knowledge leads to growth, and that this knowledge is related to the existence of agglomeration and network externalities in cities. We develop a three-tage methodology: first, we measure the amount and growth of knowledge in cities using the OCDE (2003) classification and employment data; second, we identify the spatial structure of the area of analysis (networks of cities); third, we combine the Glaeser - Henderson - De Lucio models with spatial econometric specifications in order to contrast the existence of spatially static (agglomeration) and spatially dynamic (network) external economies in an urban growth model. Results suggest that higher growth rates are associated to higher levels of technology and knowledge. The growth of the different kinds of knowledge is related to local and spatial factors (agglomeration and network externalities) and each knowledge intensity shows a particular response to these factors. These results have implications for policy design, since we can forecast and intervene on local knowledge development paths.
Resumo:
A recent study defines a new network plane: the knowledge plane. The incorporation of the knowledge plane over the network allows having more accurate information of the current and future network states. In this paper, the introduction and management of the network reliability information in the knowledge plane is proposed in order to improve the quality of service with protection routing algorithms in GMPLS over WDM networks. Different experiments prove the efficiency and scalability of the proposed scheme in terms of the percentage of resources used to protect the network
Resumo:
The goal of this paper is twofold: first, we aim to assess the role played by inventors’ cross-regional mobility and networks of collaboration in fostering knowledge diffusion across regions and subsequent innovation. Second, we intend to evaluate the feasibility of using mobility and networks information to build cross-regional interaction matrices to be used within the spatial econometrics toolbox. To do so, we depart from a knowledge production function where regional innovation intensity is a function not only of the own regional innovation inputs but also external accessible R&D gained through interregional interactions. Differently from much of the previous literature, cross-section gravity models of mobility and networks are estimated to use the fitted values to build our ‘spatial’ weights matrices, which characterize the intensity of knowledge interactions across a panel of 269 regions covering most European countries over 6 years.
Resumo:
The objective of this study was research the shared knowledge and the means of sharing with the help of social network analysis. The purpose of this study was to give descriptive information to case-organization about its situational network status in different units. The premise of the study is the success of organizational competences and networks, especially when it comes to the sharing of knowledge. The research was accomplished in a TEKES –projects, Developing Network-Based Services – The Role of Competences and Networks COMNET –projects case-organization. Lappeenranta School of Business and the case-organization started the project in co-operation. The baseline for the study was organizational competencies and organizational networks as success factors, especially from the knowledge sharing’s point of view. The research was based on triangulation, which included pre-interviews, network analyses accomplished by Webropol –e-mail survey and qualitative interviews. The results indicated that regular unit meetings were experienced to be the most important method of knowledge sharing along with e-mailing, intranet and weekly bulletins. The co-operation between units was also experienced to be important when evaluating knowledge sharing and communication. The intrafirm network was experienced tight. Dispersed units and partly unclear means of information sharing were the biggest obstacles for information communication. Knowledge sharing, communication with others and trainings were seen important in the case-organization.
Resumo:
A recent study defines a new network plane: the knowledge plane. The incorporation of the knowledge plane over the network allows having more accurate information of the current and future network states. In this paper, the introduction and management of the network reliability information in the knowledge plane is proposed in order to improve the quality of service with protection routing algorithms in GMPLS over WDM networks. Different experiments prove the efficiency and scalability of the proposed scheme in terms of the percentage of resources used to protect the network
Resumo:
Monográfico con el título: 'Aportaciones de las nuevas tecnologías a la investigación educativa'. Resumen basado en el de la publicación
Resumo:
El objetivo de esta tesis es predecir el rendimiento de los estudiantes de doctorado en la Universidad de Girona según características personales (background), actitudinales y de redes sociales de los estudiantes. La población estudiada son estudiantes de tercer y cuarto curso de doctorado y sus directores de tesis doctoral. Para obtener los datos se ha diseño un cuestionario web especificando sus ventajas y teniendo en cuenta algunos problemas tradicionales de no cobertura o no respuesta. El cuestionario web se hizo debido a la complejidad que comportan de las preguntas de red social. El cuestionario electrónico permite, mediante una serie de instrucciones, reducir el tiempo para responder y hacerlo menos cargado. Este cuestionario web, además es auto administrado, lo cual nos permite, según la literatura, unas respuestas mas honestas que cuestionario con encuestador. Se analiza la calidad de las preguntas de red social en cuestionario web para datos egocéntricos. Para eso se calcula la fiabilidad y la validez de este tipo de preguntas, por primera vez a través del modelo Multirasgo Multimétodo (Multitrait Multimethod). Al ser datos egocéntricos, se pueden considerar jerárquicos, y por primera vez se una un modelo Multirasgo Multimétodo Multinivel (multilevel Multitrait Multimethod). Las la fiabilidad y validez se pueden obtener a nivel individual (within group component) o a nivel de grupo (between group component) y se usan para llevar a cabo un meta-análisis con otras universidades europeas para analizar ciertas características de diseño del cuestionario. Estas características analizan si para preguntas de red social hechas en cuestionarios web son más fiables y validas hechas "by questions" o "by alters", si son presentes todas las etiquetas de frecuencia para los ítems o solo la del inicio y final, o si es mejor que el diseño del cuestionario esté en con color o blanco y negro. También se analiza la calidad de la red social en conjunto, en este caso específico son los grupos de investigación de la universidad. Se tratan los problemas de los datos ausentes en las redes completas. Se propone una nueva alternativa a la solución típica de la red egocéntrica o los respondientes proxies. Esta nueva alternativa la hemos nombrado "Nosduocentered Network" (red Nosduocentrada), se basa en dos actores centrales en una red. Estimando modelos de regresión, esta "Nosduocentered network" tiene mas poder predictivo para el rendimiento de los estudiantes de doctorado que la red egocéntrica. Además se corrigen las correlaciones de las variables actitudinales por atenuación debido al pequeño tamaño muestral. Finalmente, se hacen regresiones de los tres tipos de variables (background, actitudinales y de red social) y luego se combinan para analizar cual para predice mejor el rendimiento (según publicaciones académicas) de los estudiantes de doctorado. Los resultados nos llevan a predecir el rendimiento académico de los estudiantes de doctorado depende de variables personales (background) i actitudinales. Asimismo, se comparan los resultados obtenidos con otros estudios publicados.
Resumo:
This paper describes the user modeling component of EPIAIM, a consultation system for data analysis in epidemiology. The component is aimed at representing knowledge of concepts in the domain, so that their explanations can be adapted to user needs. The first part of the paper describes two studies aimed at analysing user requirements. The first one is a questionnaire study which examines the respondents' familiarity with concepts. The second one is an analysis of concept descriptions in textbooks and from expert epidemiologists, which examines how discourse strategies are tailored to the level of experience of the expected audience. The second part of the paper describes how the results of these studies have been used to design the user modeling component of EPIAIM. This module works in a two-step approach. In the first step, a few trigger questions allow the activation of a stereotype that includes a "body" and an "inference component". The body is the representation of the body of knowledge that a class of users is expected to know, along with the probability that the knowledge is known. In the inference component, the learning process of concepts is represented as a belief network. Hence, in the second step the belief network is used to refine the initial default information in the stereotype's body. This is done by asking a few questions on those concepts where it is uncertain whether or not they are known to the user, and propagating this new evidence to revise the whole situation. The system has been implemented on a workstation under UNIX. An example of functioning is presented, and advantages and limitations of the approach are discussed.
Resumo:
This conceptual paper aims to improve our understanding of how internationalised firms use outsourcing and offshoring strategies to manage knowledge and information through the life-cycle of integrated product-service solutions. More precisely, we identify the appropriate theoretical framework for this analysis and investigate through in-depth case studies how UK engineering firms organise, coordinate, and incentivise work that is executed in globally distributed teams. Our research focuses on their UK and India offices to study the organisation and governance of distributed teams. The research has several theoretical dimensions - organization; geography; time and knowledge - that it addresses as boundary challenges.
Resumo:
Automatic indexing and retrieval of digital data poses major challenges. The main problem arises from the ever increasing mass of digital media and the lack of efficient methods for indexing and retrieval of such data based on the semantic content rather than keywords. To enable intelligent web interactions, or even web filtering, we need to be capable of interpreting the information base in an intelligent manner. For a number of years research has been ongoing in the field of ontological engineering with the aim of using ontologies to add such (meta) knowledge to information. In this paper, we describe the architecture of a system (Dynamic REtrieval Analysis and semantic metadata Management (DREAM)) designed to automatically and intelligently index huge repositories of special effects video clips, based on their semantic content, using a network of scalable ontologies to enable intelligent retrieval. The DREAM Demonstrator has been evaluated as deployed in the film post-production phase to support the process of storage, indexing and retrieval of large data sets of special effects video clips as an exemplar application domain. This paper provides its performance and usability results and highlights the scope for future enhancements of the DREAM architecture which has proven successful in its first and possibly most challenging proving ground, namely film production, where it is already in routine use within our test bed Partners' creative processes. (C) 2009 Published by Elsevier B.V.
Resumo:
Sociedades pós-modernas caracterizam-se pela transição de economias baseadas em ativos tangíveis para economias de conhecimento, onde indivíduos vivenciam uma imprescindível conectividade, mas ao mesmo tempo, experimentam um enfraquecimento das estruturas sociais, que tem generado uma crescente necessidade de se criar bases cognitivas e afetivas para a vida (Rheingold, 1992; Wasko & Farah, 2005; Arvidsson, 2008). Nesse cenário se desenvolve o fenômeno das redes sociais virtuais, agregando milhões de pessoas que compartilham mensagens de texto, imagens e vídeos todos os dias (Nielsen, 2012) fazendo com que organizações privadas foquem cada vez mais seus investimentos para acompanhar as novas tendências (McWilliam, 2000; Reichheld & Schefter, 2000; Yoo, Suh & Lee, 2002; Arvidsson, 2008). Consequentemente, uma das mais importantes questões que vem ganhando importância no meio academico e entre profissionais da área é justamente: por que as pessoas compartilham conhecimento online? (Monge, Fulk, Kalman, Flanigan, Parnassa & Rumsey, 1998; Lin, 2001) Por meio de uma metodologia de estudo de caso conduzida no Brasil e na França, este estudo objetiva produzir uma relevante revisão teórica acerca do tema, trazendo novas idéias de diferentes contextos, e propondo um modelo para avaliar as principais motivações que conduzem indivíduos a compartilhar conhecimento em redes sociais virtuais. Essas razões foram estruturadas em cinco dimensões: capital estrutural, cognitivo e relacional, motivações pessoais e razões monetárias (Nahapiet & Ghoshal, 1998; Wasko & Faraj, 2005; Chiu et al, 2006). As evidências sugerem que o processo de participar e compartilhar conhecimento em redes sociais virtuais é resultado de uma complexa combinação de motivações de orientação pessoal e coletiva, que parecem variar pouco de acordo com os diferentes objetivos e contextos dessas comunidades, onde as razões financeiras parecem ser secundárias.
Resumo:
This document represents a doctoral thesis held under the Brazilian School of Public and Business Administration of Getulio Vargas Foundation (EBAPE/FGV), developed through the elaboration of three articles. The research that resulted in the articles is within the scope of the project entitled “Windows of opportunities and knowledge networks: implications for catch-up in developing countries”, funded by Support Programme for Research and Academic Production of Faculty (ProPesquisa) of Brazilian School of Public and Business Administration (EBAPE) of Getulio Vargas Foundation.