52 resultados para Isometry


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The tetrablock, roughly speaking, is the set of all linear fractional maps that map the open unit disc to itself. A formal definition of this inhomogeneous domain is given below. This paper considers triples of commuting bounded operators (A,B,P) that have the tetrablock as a spectral set. Such a triple is named a tetrablock contraction. The motivation comes from the success of model theory in another inhomogeneous domain, namely, the symmetrized bidisc F. A pair of commuting bounded operators (S,P) with Gamma as a spectral set is called a Gamma-contraction, and always has a dilation. The two domains are related intricately as the Lemma 3.2 below shows. Given a triple (A, B, P) as above, we associate with it a pair (F-1, F-2), called its fundamental operators. We show that (A,B,P) dilates if the fundamental operators F-1 and F-2 satisfy certain commutativity conditions. Moreover, the dilation space is no bigger than the minimal isometric dilation space of the contraction P. Whether these commutativity conditions are necessary, too, is not known. what we have shown is that if there is a tetrablock isometric dilation on the minimal isometric dilation space of P. then those commutativity conditions necessarily get imposed on the fundamental operators. En route, we decipher the structure of a tetrablock unitary (this is the candidate as the dilation triple) and a tertrablock isometry (the restriction of a tetrablock unitary to a joint invariant sub-space). We derive new results about r-contractions and apply them to tetrablock contractions. The methods applied are motivated by 11]. Although the calculations are lengthy and more complicated, they beautifully reveal that the dilation depends on the mutual relationship of the two fundamental operators, so that certain conditions need to be satisfied. The question of whether all tetrablock contractions dilate or not is unresolved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the properties of the Dirac operator on manifolds with boundaries in the presence of the Atiyah-Patodi-Singer boundary condition. An exact counting of the number of edge states for boundaries with isometry of a sphere is given. We show that the problem with the above boundary condition can be mapped to one where the manifold is extended beyond the boundary and the boundary condition is replaced by a delta function potential of suitable strength. We also briefly highlight how the problem of the self-adjointness of the operators in the presence of moving boundaries can be simplified by suitable transformations which render the boundary fixed and modify the Hamiltonian and the boundary condition to reflect the effect of moving boundary.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A commuting triple of operators (A, B, P) on a Hilbert space H is called a tetrablock contraction if the closure of the set E = {(a(11),a(22),detA) : A = GRAPHICS] with parallel to A parallel to <1} is a spectral set. In this paper, we construct a functional model and produce a set of complete unitary invariants for a pure tetrablock contraction. In this construction, the fundamental operators, which are the unique solutions of the operator equations A - B* P = DPX1DP and B - A* P = DPX2DP where X-1, X-2 is an element of B(D-P) play a pivotal role. As a result of the functional model, we show that every pure tetrablock isometry (A, B, P) on an abstract Hilbert space H is unitarily equivalent to the tetrablock contraction (MG1*+G2z, MG2*+G1z, M-z) on H-DP*(2). (D), where G(1) and G(2) are the fundamental operators of (A*, B*, P*). We prove a Beurling Lax Halmos type theorem for a triple of operators (MF1*+F2z, MF2*+F1z, M-z), where epsilon is a Hilbert space and F-1, F-2 is an element of B(epsilon). We also deal with a natural example of tetrablock contraction on a functions space to find out its fundamental operators.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, aspects of the structural mechanics of the upper and lower limbs of the three Chinese species of Rhinopithecus were examined. Linear regression and reduced major axis (RMA) analyses of natural log-transformed data were used to examine the dimensions of limb bones and other relationships to body size and locomotion. The results of this study suggest that: (1) the allometry exponents of the lengths of long limbs deviate from isometry, being moderately negative, while the shaft diameters (both sagittal and transverse) show significantly positive allometry; (2) the sagittal diameters of the tibia and ulna show extremely significantly positive allometry - the relative enlargement of the sagittal, as opposed to transverse, diameters of these bones suggests that the distal segments of the fore- and hindlimbs of Rhinopithecus experience high bending stresses during locomotion; (3) observations of Rhinopithecus species in the field indicate that all species engage in energetic leaping during arboreal locomotion. The limbs experience rapid and dramatic decelerations upon completion of a leap. We suggest that these occasional decelerations produce high bending stresses in the distal limb segments and so account for the hypertrophy of the sagittal diameters of the ulna and tibia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two new concepts for molecular solids, 'local similarity' and 'boundary-preserving isometry', are defined mathematically and a theorem which relates these concepts is formulated. 'Locally similar' solids possess an identical short-range structure and a 'boundary-preserving isometry' is a new mathematical operation on a finite region of a solid that transforms mathematically a given solid to a locally similar one. It is shown further that the existence of such a 'boundary-preserving isometry' in a given solid has infinitely many 'locally similar' solids as a consequence. Chemical implications, referring to the similarity of X-ray powder patterns and patent registration, are discussed as well. These theoretical concepts, which are first introduced in a schematic manner, are proved to exist in nature by the elucidation of the crystal structure of some diketopyrrolopyrrole (DPP) derivatives with surprisingly similar powder patterns. Although the available powder patterns were not indexable, the underlying crystals could be elucidated by using the new technique of ab initio prediction of possible polymorphs and a subsequent Rietveld refinement. Further ab initio packing calculations on other molecules reveal that 'local crystal similarity' is not restricted to DPP derivatives and should also be exhibited by other molecules such as quinacridones. The 'boundary-preserving isometry' is presented as a predictive tool for crystal engineering purposes and attempts to detect it in crystals of the Cambridge Structural Database (CSD) are reported.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The reservoir of Zhongerbei region in Gudao Oilfield is a typical fluvial facies deposit, its serious heterogeneity of the reservoir caused the distribution of remaining oil in mature reservoirs is characterized by highly scattered in the whole field, and result to declination of production, tap potential and stabilize production is more difficult. Reservoir modeling based on lay scale can not fulfill requirement. How to further studied reservoir heterogeneity within the unit and establish the finer reservoir modeling is a valid approach to oil developing. The architectural structure elements analysis is the effectively method to study reservoir heterogeneity. Utilize this method, divide the reservoirs of Gudao Oilfield into ten hierarchies. The priority studying is sixth, seven hierarchies, ie single sand layers sand bodies By the identification of sixth, seven hierarchies, subdivide the reservoir to the single genetic unit. And to subdivide by many correlation means, such as isometry and phase transition, accomplish closure and correlation of 453 wells.Connectting fluvial deposit pattern, deposition characteristic with its log, build the inverting relation between “sedimentary facies” and “electrofacies” The process emphasize genetic communication and collocation structure of genetic body in space. By detailed architecture analyses sandbodies’ structure, this paper recognize seven structure elements, such as major channel, abandoned channel, natural levee, valley flat, crevasse splay, crevasse channel and floodplain fine grain.Combination identification of architectural structure elements with facieology and study of deposition characteristic, can further knowing genesis and development of abandoned channel. It boost the accuracy to separation in blanket channel bodies distribution, and provide reference to retrieving single channel boundary. Finally, establish fine plane and section construction. On basis architectural structure map, barrier beds and interbeds isopach map and mini-structure map, considering single thin layers to be construction unit, the main layer planimetric maps have drawn and the inner oil-water boundary have revealed. All account that architectural structure elements control remaining oil distribution in layer, and develop the study on architectural structure elements to direct horizontal well is succesful.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper considers left-invariant control systems defined on the orthonormal frame bundles of simply connected manifolds of constant sectional curvature, namely the space forms Euclidean space E-3, the sphere S-3 and Hyperboloid H-3 with the corresponding frame bundles equal to the Euclidean group of motions SE(3), the rotation group SO(4) and the Lorentz group SO(1, 3). Orthonormal frame bundles of space forms coincide with their isometry groups and therefore the focus shifts to left-invariant control systems defined on Lie groups. In this paper a method for integrating these systems is given where the controls are time-independent. In the Euclidean case the elements of the Lie algebra se(3) are often referred to as twists. For constant twist motions, the corresponding curves g(t) is an element of SE(3) are known as screw motions, given in closed form by using the well known Rodrigues' formula. However, this formula is only applicable to the Euclidean case. This paper gives a method for computing the non-Euclidean screw motions in closed form. This involves decoupling the system into two lower dimensional systems using the double cover properties of Lie groups, then the lower dimensional systems are solved explicitly in closed form.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper tackles the path planning problem for oriented vehicles travelling in the non-Euclidean 3-Dimensional space; spherical space S3. For such problem, the orientation of the vehicle is naturally represented by orthonormal frame bundle; the rotation group SO(4). Orthonormal frame bundles of space forms coincide with their isometry groups and therefore the focus shifts to control systems defined on Lie groups. The oriented vehicles, in this case, are constrained to travel at constant speed in a forward direction and their angular velocities directly controlled. In this paper we identify controls that induce steady motions of these oriented vehicles and yield closed form parametric expressions for these motions. The paths these vehicles trace are defined explicitly in terms of the controls and therefore invariant with respect to the coordinate system used to describe the motion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Operator spaces of Hilbertian JC∗ -triples E are considered in the light of the universal ternary ring of operators (TRO) introduced in recent work. For these operator spaces, it is shown that their triple envelope (in the sense of Hamana) is the TRO they generate, that a complete isometry between any two of them is always the restriction of a TRO isomorphism and that distinct operator space structures on a fixed E are never completely isometric. In the infinite-dimensional cases, operator space structure is shown to be characterized by severe and definite restrictions upon finite-dimensional subspaces. Injective envelopes are explicitly computed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Motivated by the motion planning problem for oriented vehicles travelling in a 3-Dimensional space; Euclidean space E3, the sphere S3 and Hyperboloid H3. For such problems the orientation of the vehicle is naturally represented by an orthonormal frame over a point in the underlying manifold. The orthonormal frame bundles of the space forms R3,S3 and H3 correspond with their isometry groups and are the Euclidean group of motion SE(3), the rotation group SO(4) and the Lorentzian group SO(1; 3) respectively. Orthonormal frame bundles of space forms coincide with their isometry groups and therefore the focus shifts to left-invariant control systems defined on Lie groups. In this paper a method for integrating these systems is given where the controls are time-independent. For constant twist motions or helical motions, the corresponding curves g(t) 2 SE(3) are given in closed form by using the well known Rodrigues’ formula. However, this formula is only applicable to the Euclidean case. This paper gives a method for computing the non-Euclidean screw/helical motions in closed form. This involves decoupling the system into two lower dimensional systems using the double cover properties of Lie groups, then the lower dimensional systems are solved explicitly in closed form.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the geometry and the periodic geodesics of a compact Lorentzian manifold that has a Killing vector field which is timelike somewhere. Using a compactness argument for subgroups of the isometry group, we prove the existence of one timelike non self-intersecting periodic geodesic. If the Killing vector field is nowhere vanishing, then there are at least two distinct periodic geodesics; as a special case, compact stationary manifolds have at least two periodic timelike geodesics. We also discuss some properties of the topology of such manifolds. In particular, we show that a compact manifold M admits a Lorentzian metric with a nowhere vanishing Killing vector field which is timelike somewhere if and only if M admits a smooth circle action without fixed points.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Let F be a singular Riemannian foliation on a compact Riemannian manifold M. By successive blow-ups along the strata of F we construct a regular Riemannian foliation (F) over cap on a compact Riemannian manifold (M) over cap and a desingularization map (rho) over cap : (M) over cap -> M that projects leaves of (F) over cap into leaves of F. This result generalizes a previous result due to Molino for the particular case of a singular Riemannian foliation whose leaves were the closure of leaves of a regular Riemannian foliation. We also prove that, if the leaves of F are compact, then, for each small epsilon > 0, we can find (M) over cap and (F) over cap so that the desingularization map induces an epsilon-isometry between M/F and (M) over cap/(F) over cap. This implies in particular that the space of leaves M/F is a Gromov-Hausdorff limit of a sequence of Riemannian orbifolds {((M) over cap (n)/(F) over cap (n))}.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior