992 resultados para Iron-containing Intermetallics
Resumo:
BACKGROUND: Stem cell labeling with iron oxide (ferumoxide) particles allows labeled cells to be detected by magnetic resonance imaging (MRI) and is commonly used to track stem cell engraftment. However, the validity of MRI for distinguishing surviving ferumoxide-labeled cells from other sources of MRI signal, for example, macrophages containing ferumoxides released from nonsurviving cells, has not been thoroughly investigated. We sought to determine the relationship between the persistence of iron-dependent MRI signals and cell survival 3 weeks after injection of syngeneic or xenogeneic ferumoxides-labeled stem cells (cardiac-derived stem cells) in rats. METHODS AND RESULTS: We studied nonimmunoprivileged human and rat cardiac-derived stem cells and human mesenchymal stem cells doubly labeled with ferumoxides and beta-galactosidase and injected intramyocardially into immunocompetent Wistar-Kyoto rats. Animals were imaged at 2 days and 3 weeks after stem cell injection in a clinical 3-T MRI scanner. At 2 days, injection sites of xenogeneic and syngeneic cells (cardiac-derived stem cells and mesenchymal stem cells) were identified by MRI as large intramyocardial signal voids that persisted at 3 weeks (50% to 90% of initial signal). Histology (at 3 weeks) revealed the presence of iron-containing macrophages at the injection site, identified by CD68 staining, but very few or no beta-galactosidase-positive stem cells in the animals transplanted with syngeneic or xenogeneic cells, respectively. CONCLUSIONS: The persistence of significant iron-dependent MRI signal derived from ferumoxide-containing macrophages despite few or no viable stem cells 3 weeks after transplantation indicates that MRI of ferumoxide-labeled cells does not reliably report long-term stem cell engraftment in the heart.
Resumo:
Background Lipoxygenases (LOXs), a type of non-haem iron-containing dioxygenase, are ubiquitous enzymes in plants and participate in the formation of fruit aroma which is a very important aspect of fruit quality. Amongst the various aroma volatiles, saturated and unsaturated alcohols and aldehydes provide the characteristic aroma of the fruit. These compounds are formed from unsaturated fatty acids through oxidation, pyrolysis and reduction steps. This biosynthetic pathway involves at least four enzymes, including LOX, the enzyme responsible for lipid oxidation. Although some studies have been conducted on the LOX gene family in several species including Arabidopsis, soybean, cucumber and apple, there is no information from pear; and the evolutionary history of this gene family in the Rosaceae is still not resolved. Results In this study we identified 107 LOX homologous genes from five Rosaceous species (Pyrus bretschneideri, Malus × domestica, Fragaria vesca, Prunus mume and Prunus persica); 23 of these sequences were from pear. By using structure analysis, phylogenic analysis and collinearity analysis, we identified variation in gene structure and revealed the phylogenetic evolutionary relationship of this gene family. Expression of certain pear LOX genes during fruit development was verified by analysis of transcriptome data. Conclusions 23 LOX genes were identified in pear and these genes were found to have undergone a duplication 30–45 MYA; most of these 23 genes are functional. Specific gene duplication was found on chromosome4 in the pear genome. Useful information was provided for future research on the evolutionary history and transgenic research on LOX genes.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Aqueous extracts from wood biotreated with the white-rot fungus Ceriporiopsis subvermispora were evaluated for their Fe3+- and Cu2+-reducing activities and their anti- or prooxidant properties in Fenton-like reactions to decolorize the recalcitrant dye Azure B. The decolorization of Azure B was strongly inhibited in the presence of 10% (v/v) wood extracts. Only 0.1% (v/v)-diluted extracts provided some enhancement of the Azure B decolorization. The iron-containing reactions decolorized more Azure B and consumed substantially more H2O2 than the reactions containing copper. This study demonstrates that water-soluble wood phenols exert anti- or prooxidant effects that depend on their concentration in the reactions and on the type of cation, Fe3+ or Cu2+, used to convert H2O2 to OH radicals. Crown Copyright (C) 2012 Published by Elsevier Ltd. All rights reserved.
Resumo:
Polymere Nanopartikel sind kleine Teilchen, die vielseitige Einsatzmöglichkeiten für den Transport von Wirkstoffen bieten. Da Nanomaterialien in diesen biomedizinischen Anwendungen oft mit biologischen Systemen in Berührung kommen, erfordert das eine genaue Untersuchung ihrer gegenseitigen Wechselwirkungen. In diesem speziellen Forschungsgebiet, welches sich auf die Interaktionen von Nanomaterialien mit biologischen Komponenten konzentriert, wurde bereits eine Vielzahl verschiedener Nanopartikel-Zell-Interaktionen (z. B. Nanotoxizität, Wirkstofftransport-mechanismen) analysiert. Bezüglich der Untersuchungen zu nanopartikulären Wirkstofftransport-mechanismen ist es im Allgemeinen akzeptiert, dass ein erfolgreicher zellulärer Transport hauptsächlich von der Aufnahme des Nanotransporters abhängt. Deshalb analysieren wir in dieser Arbeit (1) den Wirkstofftransportmechanismus für biologisch-abbaubare eisenhaltige Poly-L-Milchsäure Nanopartikel (PLLA-Fe-PMI) sowie (2) die Aufnahmemechanismen und die intrazellulären Transportwege von nicht-abbaubaren superparamagnetischen Polystyrolnanopartikeln (SPIOPSN). rnIn dieser Arbeit identifizieren wir einen bisher unbekannten und nicht-invasiven Wirkstoff-transportmechanismus. Dabei zeigt diese Studie, dass der subzelluläre Transport der nanopartikulärer Fracht nicht unbedingt von einer Aufnahme der Nanotransporter abhängt. Der identifizierte Arzneimitteltransportmechanismus basiert auf einem einfachen physikochemischen Kontakt des hydrophoben Poly-L-Milchsäure-Nanopartikels mit einer hydrophoben Oberfläche, wodurch die Freisetzung der nanopartikulären Fracht ausgelöst wird. In Zellexperimenten führt die membranvermittelte Freisetzung der nanopartikulären Fracht zu ihrem sofortigen Transport in TIP47+- und ADRP+- Lipidtröpfchen. Der Freisetzungsmechanismus („kiss-and-run") kann durch die kovalente Einbindung des Frachtmoleküls in das Polymer des Nanopartikels blockiert werden.rnWeiterhin wird in Langzeitversuchen gezeigt, dass die Aufnahme der untersuchten polymeren Nanopartikel von einem Makropinozytose-ähnlichen Mechanismus gesteuert wird. Im Laufe dieser Arbeit werden mehrere Faktoren identifiziert, die in diesem Aufnahmemechanismus eine Rolle spielen. Darunter fallen unter anderem die kleinen GTPasen Rac1 und ARF1, die die Aufnahme von SPIOPSN beeinflussen. Darauffolgend werden die intrazellulären Transportwege der Nanopartikel untersucht. Mit Hilfe eines neuartigen Massenspektrometrieansatzes wird der intrazelluläre Transport von nanopartikelhaltigen endozytotischen Vesikeln rekonstruiert. Intensive Untersuchungen identifizieren Marker von frühen Endosomen, späten Endosomen/ multivesikulären Körpern, Rab11+- Endosomen, Flotillin-Vesikeln, Lysosomen und COP-Vesikeln. Schließlich wird der Einfluss des lysosomalen Milieus auf die Proteinhülle der Nanopartikel untersucht. Hier wird gezeigt, dass die adsorbierte Proteinhülle auf den Nanopartikeln in die Zelle transportiert wird und anschließend im Lysosom abgebaut wird. rnInsgesamt verdeutlicht diese Arbeit, dass die klassische Strategie des nanopartikulären und invasiven Wirkstofftransportmechanismuses überdacht werden muss. Weiterhin lässt sich aus den Daten schlussfolgern, dass polymere Nanopartikel einem atypischen Makropinozytose-ähnlichen Aufnahmemechanismus unterliegen. Dies resultiert in einem intrazellulären Transport der Nanopartikel von Makropinosomen über multivesikuläre Körperchen zu Lysosomen.rn
Resumo:
In this study more than 450 natural sapphire samples (most of basaltic type) collected from 19 different areas were examined. They are from Dak Nong, Dak Lak, Quy Chau, two unknown sources from the north (Vietnam); Bo Ploi, Khao Ploi Waen (Thailand); Ban Huay Sai (Laos); Australia; Shandong (China); Andapa, Antsirabe, Nosibe (Madagascar); Ballapana (Sri Lanka); Brazil; Russia; Colombia; Tansania and Malawi. rnThe samples were studied on internal characteristics, chemical compositions, Raman-, luminescence-, Fourier transform infrared (FTIR)-, and ultraviolet-visible-near infrared (UV-Vis-NIR)- spectroscopy. The internal features of these sapphire samples were observed and identified by gemological microscope, con focal micro Raman and FTIR spectroscopy. The major and minor elements of the samples were determined by electron probe microanalysis (EPMA) and the trace elements by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). rnThe structural spectra of sapphire were investigated by con focal Raman spectroscopy. The FTIR spectroscopy was used to study the vibration modes of OH-groups and also to determine hydrous mineral inclusions in sapphire. The UV-Vis-NIR absorption spectroscopy was used to analyze the cause of sapphire color. rnNatural sapphires contain many types of mineral inclusions. Typically, they are iron-containing inclusions like goethite, ilmenite, hematite, magnetite or silicate minerals commonly feldspar, and often observed in sapphires from Asia countries, like Dak Nong, Dak Lak in the south of Vietnam, Ban Huay Sai (Laos), Khao Ploi Waen and Bo Ploi (Thailand) or Shandong (China). Meanwhile, CO2-diaspore inclusions are normally found in sapphires from Tansania, Colombia, or the north of Vietnam like Quy Chau. rnIron is the most dominant element in sapphire, up to 1.95 wt.% Fe2O3 measured by EPMA and it affects spectral characteristics of sapphire.rnThe Raman spectra of sapphire contain seven peaks (2A1g + 5Eg). Two peaks at about 418.3 cm-1 and 577.7 cm-1 are influenced by high iron content. These two peaks shift towards smaller wavenumbers corresponding to increasing iron content. This shift is showed by two equations y(418.3)=418.29-0.53x andy(577.7)=577.96-0.75x, in which y is peak position (cm-1) and x is Fe2O3 content (wt.%). By exploiting two these equations one can estimate the Fe2O3 contents of sapphire or corundum by identifying the respective Raman peak positions. Determining the Fe2O3 content in sapphire can help to distinguish sapphires from different origins, e.g. magmatic and metamorphic sapphire. rnThe luminescence of sapphire is characterized by two R-lines: R1 at about 694 nm and R2 at about 692 nm. This characteristic is also influenced by high iron content. The peak positions of two R-lines shift towards to smaller wavelengths corresponding to increasing of iron content. This correlation is showed by two equations y(R_2 )=692.86-0.049x and y(R_1 )=694.29-0.047x, in which y is peak position (nm) of respective R-lines and x is Fe2O3 content (wt.%). Two these equations can be applied to estimate the Fe2O3 content of sapphire and help to separate sapphires from different origins. The luminescence is also applied for determination of the remnant pressure or stress around inclusions in Cr3+-containing corundum by calibrating a 0-pressure position in experimental techniques.rnThe infrared spectra show the presence of vibrations originating from OH-groups and hydrous mineral inclusions in the range of 2500-4000 cm-1. Iron has also an effect upon the main and strongest peak at about 3310 cm-1. The 3310 cm-1 peak is shifted to higher wavenumber when iron content increases. This relationship is expressed by the equation y(3310)=0.92x+3309.17, in which y is peak position of the 3310 cm-1 and x is Fe2O3 content (wt.%). Similar to the obtained results in Raman and luminescence spectra, this expression can be used to estimate the Fe2O3 content and separate sapphires from different origins. rnThe UV-Vis-NIR absorption spectra point out the strong and sharp peaks at about 377, 387, and 450 nm related to dispersed Fe3+, a broad band around 557 and 600 nm related to intervalence charge transfer (IVCT) Fe2+/Ti4+, and a broader band around 863 nm related to IVCT of Fe2+/Fe3+. rnGenerally, sapphires from different localities were completely investigated on internal features, chemical compounds, and solid spectral characteristics. The results in each part contribute for identifying the iron content and separate sapphires from different localities order origins. rn
Resumo:
The research activities were focused on evaluating the effect of Mo addition to mechanical properties and microstructure of A354 aluminium casting alloy. Samples, with increasing amount of Mo, were produced and heat treated. After heat treatment and exposition to high temperatures samples underwent microstructural and chemical analyses, hardness and tensile tests. The collected data led to the optimization of both casting parameters, for obtaining a homogeneous Mo distribution in the alloy, and heat treatment parameters, allowing the formation of Mo based strengthening precipitates stable at high temperature. Microstructural and chemical analyses highlighted how Mo addition in percentage superior to 0.1% wt. can modify the silicon eutectic morphology and hinder the formation of iron based β intermetallics. High temperature exposure curves, instead, showed that after long exposition hardness is slightly influenced by heat treatment while the effect of Mo addition superior to 0,3% is negligible. Tensile tests confirmed that the addition of 0.3%wt Mo induces an increase of about 10% of ultimate tensile strength after high temperature exposition (250°C for 100h) while heat treatments have slight influence on mechanical behaviour. These results could be exploited for developing innovative heat treatment sequence able to reduce residual stresses in castings produced with A354 modified with Mo.
Resumo:
The study of natural magnetic sands is instrumental to investigate the geological aspects of their formation and of the origin of their territory. In particular, Mössbauer spectroscopy provides unique information on their iron content and on the oxidation state of iron in their mineral composition. The Italian coast on the Mediterranean Sea near Rome is known for the presence of highly magnetic black sands of volcanic origin. A study of the room temperature Mössbauer spec- trum, powder X-ray diffraction, energy dispersive X-ray spectroscopy, and magnetic measurements of a sample of black magnetic sand collected on the seashore of the town of Ladispoli is performed. This study reveals magnetite as main constituent with iron in both tetrahedral and octahedral sites. Minor constituents are the iron minerals hematite and ilmenite, the iron containing minerals diopsite, gossular, and allanite, as well as ubiquitous sanidine, quartz, and calcite.
Resumo:
PURPOSE To assess ultrasmall superparamagnetic iron oxide particles (USPIO) -enhanced MR imaging for the differentiation of malignant from benign, inflammatory lesions. MATERIALS AND METHODS In this study, approved by the local animal care committee, VX2 carcinoma and intramuscular abscesses were implanted into the hind thighs of New Zealand White rabbits. MR imaging was performed pre contrast and serially for 24 h after the injection of USPIO. MR findings were compared with histopathologic results based on Prussian blue stains for the presence of iron. RESULTS Twenty-four hours after the Ferumoxtran-injection, no changes were observed in VX2 carcinomas, whereas a mean reduction of the contrast-to-noise ratio (CNR) of approximately 90% was noticed in abscesses as well as in necrotic tumors. On histopathologic examination, abscess and necrotic parts of the tumor were found to include iron-containing monocytes demonstrating that the reduction in CNR was caused by USPIO-tagged monocytes. CONCLUSION Our results prove the ability of USPIO-enhanced MRI to differentiate benign, inflammatory from malignant lesions.
Resumo:
In terms of physical and genetic features studied nodules are assigned to the sedimentational manganese-iron type (Canary Basin) and to the iron-containing type (Guyana Basin). They are enriched in Fe, Co and Pb and depleted in Mn, Ni, Cu, and Zn. Cores of the nodules from the Canary Basin consist primarily of peridotite, gabbro, dolerite, and metamorphic rock. Great predominance of peridotite and gabbro indicates that blocks of ocean crust underwent considerable displacement, bringing the third and fourth layers of a crust to the surface.
Resumo:
The global regulator FNR (for fumarate nitrate reduction) controls the transcription of >100 genes whose products facilitate adaptation of Escherichia coli to growth under O2-limiting conditions. Previous Mössbauer studies have shown that anaerobically purified FNR contains a [4Fe-4S]2+ cluster that, on exposure to oxygen, is converted into a [2Fe-2S]2+ cluster, a process that decreases DNA binding by FNR. Using 57Fe Mössbauer spectroscopy of E. coli cells containing overexpressed FNR, we show here that the same cluster conversion also occurs in vivo on exposure to O2. Furthermore, the data show that a significant amount of the [4Fe-4S]2+ cluster is regenerated when the cells are shifted back to an anaerobic environment. The present study also demonstrates that 57Fe Mössbauer spectroscopy can be employed to study the in vivo behavior of (overexpressed) proteins. The use of this technique to study other iron-containing cell components is discussed.
Resumo:
In inflammatory states, nitric oxide (.NO) may be synthesized from precursor L-arginine via inducible .NO synthase (iNOS) in large amounts for prolonged periods of time. When .NO acts as an effector molecule under these conditions, it may be toxic to cells by inhibition of iron-containing enzymes or initiation of DNA single-strand breaks. In contrast to molecular targets of .NO, considerably less is known regarding mechanisms by which cells become resistant to .NO. Metallothionein (MT), the major protein thiol induced in cells exposed to cytokines and bacterial products, is capable of forming iron-dinitrosyl thiolates in vitro. Therefore, we tested the hypothesis that overexpression of MT reduces the sensitivity of NIH 3T3 cells to the .NO donor, S-nitrosoacetylpenicillamine (SNAP), and to .NO released from cells (NIH 3T3-DFG-iNOS) after infection with a retroviral vector expressing human iNOS gene. There was a 4-fold increase in MT in cells transfected with the mouse MT-1 gene (NIH 3T3/MT) compared to cells transfected with the promoter-free inverted gene (NIH 3T3/TM). NIH 3T3/MT cells were more resistant than NIH 3T3/TM cells to the cytotoxic effects of SNAP (0.1-1.0 mM) or .NO released from NIH 3T3-DFG-iNOS cells. A brief (1 h) exposure to 10 mM SNAP caused DNA single-strand breaks that were 9-fold greater in NIH 3T3/TM compared to NIH 3T3/MT cells. Electron paramagnetic resonance spectroscopy of NIH 3T3 cells revealed a greater peak at g = 2.04 (e.g., iron-dinitrosyl complex) in NIH 3T3/MT than NIH 3T3/TM cells. These data are consistent with a role for cytoplasmic MT in interacting with .NO and reducing .NO-induced cyto- and nuclear toxicity.
Resumo:
In terms of physical and genetic features studied nodules are assigned to the sedimentational manganese-iron type (Canary Basin) and to the iron-containing type (Guyana Basin). They are enriched in Fe, Co and Pb and depleted in Mn, Ni, Cu, and Zn. Cores of the nodules from the Canary Basin consist primarily of peridotite, gabbro, dolerite, and metamorphic rock. Great predominance of peridotite and gabbro indicates that blocks of ocean crust underwent considerable displacement, bringing the third and fourth layers of a crust to the surface.
Resumo:
The surfaces of iron-containing sulphide minerals were oxidised by a range of inorganic oxidants, and the resultant surface alteration products studied using various spectroscopic techniques. The characterisation of surface oxidation is relevant to the alteration of ores in nature and their behaviour during flotation and leaching, of importance to the metallurgical industry. The sulphides investigated included pyrite (FeS2), hexagonal pyrrhotine (Fe9S10), monoclinic pyrrhotine (Fe7Se), violarite (FeNi2S4), pentlandite ((FeiNi)9Se), chalcopyrite (CuFeS2) and arsenopyrite (FeAsS). The surfaces were oxidised by various methods including acid (sulphuric), alkali (ammonium hydroxide), hydrogen peroxide, steam, electrochemical and air/oxygen (in a low-temperature (150ºC) furnace), The surfaces were examined using surface sensitive chemical spectroscopic methods including x-ray photoelectron spectroscopy (ms), Auger electron spectroscopy (LES) and conversion electron Mössbauer spectroscopy (CEKS). Physical characterisation of the surfaces was undertaken using scanning electron microscopy (SM), spectral reflectance measurements and optical microscopy. Bulk characterisation of the sulphide minerals was undertaken using x-ray diffraction and electron microprobe techniques. Observed phases suggested to form in most of the sulphide surfaces include Fe204, Fe1-x0, Fe202, Fe00H, Fe(OH)3, with iron II & III oxy-sulphates. The iron sulphides show variable extents of oxidation, indicating pyrite to be the most stable. Violarite shows stability to oxidation, suggested to result from both its stable spinel crystal structure, and from the rapid formation of sulphur at the surface protecting the sub-surface from further oxidation. The phenomenon of sub-surface enrichment (in metals), forming secondary sulphides, is exhibited by pentlandite and chalcopyrite, forming violarite and copper sulphides respectively. The consequences of this enrichment with regard to processing and leaching are discussed. Arsenopyrite, often a hindrance in ore processing, exhibits the formation of arsenic compounds at the surface, the dissolution of which is discussed in view of the possible environmental hazard caused by the local pollution of water systems. The results obtained allow a characterisation of the sulphides in terms of their relative stability to oxidation, and an order of stability of the sulphide surfaces is proposed. Models were constructed to explain the chemical compositions of the surfaces, and the inter-relationships between the phases determined at the surface and in the sub-surface. These were compared to the thermo-chemically predicted phases shown in Eh/pH and partial pressure diagrams! The results are discussed, both in terms of the mineralogy and geochemistry of natural ores, and the implications for extraction and processing of these ore minerals.
Resumo:
The thesis examines the possibilities for the beneficiation of steel making slags by using mineral processing methods. Chemical and Mineralogical investigations have been carried out by SEM and EP}ffi to determine the most suitable separation methods in terms of crystal size, chemical composition and surface properties. Magnetic separation was applied in connection with size reductions for the extraction of the metallic iron prills and other iron containing phases and the results were related to the feed size and operating conditions. The behaviour of the slags in flotation tests was studied with respect to the recovery and grade. It was found that the free lime presence in the slags caused a high acid consumption of both weak and strong acids. It also reacted with acids and consequently produced a white precipitate, (CaS04 for H2 S04 ). The poor response of the phases to the flotation by different types of collector was found to be due to surface alteration caused by the free lime. The flocculation tests were carried out at the natural pH of the slags to prevent surface alterations. Settling tests were done to determine the suitable flocculants for the separation tests. The effect of the settling period, flocculant concentration, conditioning period and number of cleaning cycles were determined to optimize the separation tests. The discussion brings together this study with previous theoretically based work cited in the literature to elucidate the factor5governing the utilisation of steel making slags.