952 resultados para Iron Homeostasis, Matriptase-2, Proteolytic Regulator
Resumo:
CD19 receptor is expressed at high levels on human B-lineage lymphoid cells and is physically associated with the Src protooncogene family protein-tyrosine kinase Lyn. Recent studies indicate that the membrane-associated CD19-Lyn receptor-enzyme complex plays a pivotal role for survival and clonogenicity of immature B-cell precursors from acute lymphoblastic leukemia patients, but its significance for mature B-lineage lymphoid cells (e.g., B-lineage lymphoma cells) is unknown. CD19-associated Lyn kinase can be selectively targeted and inhibited with B43-Gen, a CD19 receptor-specific immunoconjugate containing the naturally occurring protein-tyrosine kinase inhibitor genistein (Gen). We now present experimental evidence that targeting the membrane-associated CD19-Lyn complex in vitro with B43-Gen triggers rapid apoptotic cell death in highly radiation-resistant p53-Bax- Ramos-BT B-lineage lymphoma cells expressing high levels of Bcl-2 protein without affecting the Bcl-2 expression level. The therapeutic potential of this membrane-directed apoptosis induction strategy was examined in a scid mouse xenograft model of radiation-resistant high-grade human B-lineage lymphoma. Remarkably, in vivo treatment of scid mice challenged with an invariably fatal number of Ramos-BT cells with B43-Gen at a dose level < 1/10 the maximum tolerated dose resulted in 70% long-term event-free survival. Taken together, these results provide unprecedented evidence that the membrane-associated anti-apoptotic CD19-Lyn complex may be at least as important as Bcl-2/Bax ratio for survival of lymphoma cells.
Protective Iron Carbonate Films—Part 2: Chemical Removal by Dissolution in Single-Phase Aqueous Flow
Resumo:
Preface. Iron is considered to be a minor element employed, in a variety of forms, by nearly all living organisms. In some cases, it is utilised in large quantities, for instance for the formation of magnetosomes within magnetotactic bacteria or during use of iron as a respiratory donor or acceptor by iron oxidising or reducing bacteria. However, in most cases the role of iron is restricted to its use as a cofactor or prosthetic group assisting the biological activity of many different types of protein. The key metabolic processes that are dependent on iron as a cofactor are numerous; they include respiration, light harvesting, nitrogen fixation, the Krebs cycle, redox stress resistance, amino acid synthesis and oxygen transport. Indeed, it is clear that Life in its current form would be impossible in the absence of iron. One of the main reasons for the reliance of Life upon this metal is the ability of iron to exist in multiple redox states, in particular the relatively stable ferrous (Fe2+) and ferric (Fe3+) forms. The availability of these stable oxidation states allows iron to engage in redox reactions over a wide range of midpoint potentials, depending on the coordination environment, making it an extremely adaptable mediator of electron exchange processes. Iron is also one of the most common elements within the Earth’s crust (5% abundance) and thus is considered to have been readily available when Life evolved on our early, anaerobic planet. However, as oxygen accumulated (the ‘Great oxidation event’) within the atmosphere some 2.4 billion years ago, and as the oceans became less acidic, the iron within primordial oceans was converted from its soluble reduced form to its weakly-soluble oxidised ferric form, which precipitated (~1.8 billion years ago) to form the ‘banded iron formations’ (BIFs) observed today in Precambrian sedimentary rocks around the world. These BIFs provide a geological record marking a transition point away from the ancient anaerobic world towards modern aerobic Earth. They also indicate a period over which the bio-availability of iron shifted from abundance to limitation, a condition that extends to the modern day. Thus, it is considered likely that the vast majority of extant organisms face the common problem of securing sufficient iron from their environment – a problem that Life on Earth has had to cope with for some 2 billion years. This struggle for iron is exemplified by the competition for this metal amongst co-habiting microorganisms who resort to stealing (pirating) each others iron supplies! The reliance of micro-organisms upon iron can be disadvantageous to them, and to our innate immune system it represents a chink in the microbial armour, offering an opportunity that can be exploited to ward off pathogenic invaders. In order to infect body tissues and cause disease, pathogens must secure all their iron from the host. To fight such infections, the host specifically withdraws available iron through the action of various iron depleting processes (e.g. the release of lactoferrin and lipocalin-2) – this represents an important strategy in our defence against disease. However, pathogens are frequently able to deploy iron acquisition systems that target host iron sources such as transferrin, lactoferrin and hemoproteins, and thus counteract the iron-withdrawal approaches of the host. Inactivation of such host-targeting iron-uptake systems often attenuates the pathogenicity of the invading microbe, illustrating the importance of ‘the battle for iron’ in the infection process. The role of iron sequestration systems in facilitating microbial infections has been a major driving force in research aimed at unravelling the complexities of microbial iron transport processes. But also, the intricacy of such systems offers a challenge that stimulates the curiosity. One such challenge is to understand how balanced levels of free iron within the cytosol are achieved in a way that avoids toxicity whilst providing sufficient levels for metabolic purposes – this is a requirement that all organisms have to meet. Although the systems involved in achieving this balance can be highly variable amongst different microorganisms, the overall strategy is common. On a coarse level, the homeostatic control of cellular iron is maintained through strict control of the uptake, storage and utilisation of available iron, and is co-ordinated by integrated iron-regulatory networks. However, much yet remains to be discovered concerning the fine details of these different iron regulatory processes. As already indicated, perhaps the most difficult task in maintaining iron homeostasis is simply the procurement of sufficient iron from external sources. The importance of this problem is demonstrated by the plethora of distinct iron transporters often found within a single bacterium, each targeting different forms (complex or redox state) of iron or a different environmental condition. Thus, microbes devote considerable cellular resource to securing iron from their surroundings, reflecting how successful acquisition of iron can be crucial in the competition for survival. The aim of this book is provide the reader with an overview of iron transport processes within a range of microorganisms and to provide an indication of how microbial iron levels are controlled. This aim is promoted through the inclusion of expert reviews on several well studied examples that illustrate the current state of play concerning our comprehension of how iron is translocated into the bacterial (or fungal) cell and how iron homeostasis is controlled within microbes. The first two chapters (1-2) consider the general properties of microbial iron-chelating compounds (known as ‘siderophores’), and the mechanisms used by bacteria to acquire haem and utilise it as an iron source. The following twelve chapters (3-14) focus on specific types of microorganism that are of key interest, covering both an array of pathogens for humans, animals and plants (e.g. species of Bordetella, Shigella, , Erwinia, Vibrio, Aeromonas, Francisella, Campylobacter and Staphylococci, and EHEC) as well as a number of prominent non-pathogens (e.g. the rhizobia, E. coli K-12, Bacteroides spp., cyanobacteria, Bacillus spp. and yeasts). The chapters relay the common themes in microbial iron uptake approaches (e.g. the use of siderophores, TonB-dependent transporters, and ABC transport systems), but also highlight many distinctions (such as use of different types iron regulator and the impact of the presence/absence of a cell wall) in the strategies employed. We hope that those both within and outside the field will find this book useful, stimulating and interesting. We intend that it will provide a source for reference that will assist relevant researchers and provide an entry point for those initiating their studies within this subject. Finally, it is important that we acknowledge and thank wholeheartedly the many contributors who have provided the 14 excellent chapters from which this book is composed. Without their considerable efforts, this book, and the understanding that it relays, would not have been possible. Simon C Andrews and Pierre Cornelis
Resumo:
Abstract Background In the alpha subclass of proteobacteria iron homeostasis is controlled by diverse iron responsive regulators. Caulobacter crescentus, an important freshwater α-proteobacterium, uses the ferric uptake repressor (Fur) for such purpose. However, the impact of the iron availability on the C. crescentus transcriptome and an overall perspective of the regulatory networks involved remain unknown. Results In this work we report the identification of iron-responsive and Fur-regulated genes in C. crescentus using microarray-based global transcriptional analyses. We identified 42 genes that were strongly upregulated both by mutation of fur and by iron limitation condition. Among them, there are genes involved in iron uptake (four TonB-dependent receptor gene clusters, and feoAB), riboflavin biosynthesis and genes encoding hypothetical proteins. Most of these genes are associated with predicted Fur binding sites, implicating them as direct targets of Fur-mediated repression. These data were validated by β-galactosidase and EMSA assays for two operons encoding putative transporters. The role of Fur as a positive regulator is also evident, given that 27 genes were downregulated both by mutation of fur and under low-iron condition. As expected, this group includes many genes involved in energy metabolism, mostly iron-using enzymes. Surprisingly, included in this group are also TonB-dependent receptors genes and the genes fixK, fixT and ftrB encoding an oxygen signaling network required for growth during hypoxia. Bioinformatics analyses suggest that positive regulation by Fur is mainly indirect. In addition to the Fur modulon, iron limitation altered expression of 113 more genes, including induction of genes involved in Fe-S cluster assembly, oxidative stress and heat shock response, as well as repression of genes implicated in amino acid metabolism, chemotaxis and motility. Conclusions Using a global transcriptional approach, we determined the C. crescentus iron stimulon. Many but not all of iron responsive genes were directly or indirectly controlled by Fur. The iron limitation stimulon overlaps with other regulatory systems, such as the RpoH and FixK regulons. Altogether, our results showed that adaptation of C. crescentus to iron limitation not only involves increasing the transcription of iron-acquisition systems and decreasing the production of iron-using proteins, but also includes novel genes and regulatory mechanisms.
Resumo:
Matriptase-2 (Tmprss6), a type II transmembrane serine protease, has an essential role in iron homoeostasis as a hepcidin regulator. Recently, patients with TMPRSS6 mutations and suffering from iron-refractory iron deficiency anaemia (IRIDA) have been reported. We describe two new cases of IRIDA, one patient of Swiss origin and the second of Italian origin. The first case results from a large deletion of 1054 nucleotides corresponding to an in frame deletion of 30 amino acid residues in the low-density lipoprotein receptor-1/-2 (LDLR-1/-2) domains and from a missense mutation in CUB1 (S304L). In the second case, a homozygous G-->C mutation in the last nucleotide of exon 15 and which modified the consensus sequence of the 5' splice donor site of intron 15 (AGgt-->ACgt) was identified. Both patients had a high hepcidin level and low serum iron and transferrin saturation compared to age-matched controls. Continuous perfusion of i.v. iron 4 h/d x 5 d in the first case resulted in a significant rise in haemoglobin. These new cases of IRIDA illustrate the importance of LDLR-1/-2 and CUB1 domains in matriptase-2 function as well as the role of matriptase-2 in hepcidin regulation. Furthermore a deletional form of TMPRSS6 (in LDLR-1/-2 domains) resulting in IRIDA is described for the first time. These cases reinforce the belief that patients suffering from IRIDA have no specific geographical or ethnic distribution and are sporadic secondary to different mutations of the matriptase-2 gene.
Resumo:
We previously reported the disruption of the murine gene encoding the transcription factor USF2 and its consequences on glucose-dependent gene regulation in the liver. We report here a peculiar phenotype of Usf2−/− mice that progressively develop multivisceral iron overload; plasma iron overcomes transferrin binding capacity, and nontransferrin-bound iron accumulates in various tissues including pancreas and heart. In contrast, the splenic iron content is strikingly lower in knockout animals than in controls. To identify genes that may account for the abnormalities of iron homeostasis in Usf2−/− mice, we used suppressive subtractive hybridization between livers from Usf2−/− and wild-type mice. We isolated a cDNA encoding a peptide, hepcidin (also referred to as LEAP-1, for liver-expressed antimicrobial peptide), that was very recently purified from human blood ultrafiltrate and from urine as a disulfide-bonded peptide exhibiting antimicrobial activity. Accumulation of iron in the liver has been recently reported to up-regulate hepcidin expression, whereas our data clearly show that a complete defect in hepcidin expression is responsible for progressive tissue iron overload. The striking similarity of the alterations in iron metabolism between HFE knockout mice, a murine model of hereditary hemochromatosis, and the Usf2−/− hepcidin-deficient mice suggests that hepcidin may function in the same regulatory pathway as HFE. We propose that hepcidin acts as a signaling molecule that is required in conjunction with HFE to regulate both intestinal iron absorption and iron storage in macrophages.
Resumo:
We report a genome-wide association study to iron status. We identify an association of SNPs in TPMRSS6 to serum iron (rs855791, combined P = 1.5 x 10(-20)), transferrin saturation (combined P = 2.2 x 10(-23)) and erythrocyte mean cell volume (MCV, combined P = 1.1 x 10(-10)). We also find suggestive evidence of association with blood hemoglobin levels (combined P = 5.3 x 10(-7)). These findings demonstrate the involvement of TMPRSS6 in control of iron homeostasis and in normal erythropoiesis.
Resumo:
Ferric uptake regulator (Fur) is a transcriptional regulator controlling the expression of genes involved in iron homeostasis and plays an important role in pathogenesis. Fur-regulated sRNAs/CDSs were found to have upstream Fur Binding Sites (FBS). We have constructed a Positional Weight Matrix from 100 known FBS (19 nt) and tracked the `Orphan' FBSs. Possible Fur regulated sRNAs and CDSs were identified by comparing their genomic locations with the `Orphan' FBSs identified. Thirty-eight `novel' and all known Fur regulated sRNAs in nine proteobacteria were identified. In addition, we identified high scoring FBSs in the promoter regions of the 304 CDSs and 68 of them were involved in siderophore biosynthesis, iron-transporters, two-component system, starch/sugar metabolism, sulphur/methane metabolism, etc. The present study shows that the Fur regulator controls the expression of genes involved in diverse metabolic activities and it is not limited to iron metabolism alone. (C) 2012 Elsevier B.V. All rights reserved.
Quantitative, Time-Resolved Proteomic Analysis Using Bio-Orthogonal Non-Canonical Amino Acid Tagging
Resumo:
Bio-orthogonal non-canonical amino acid tagging (BONCAT) is an analytical method that allows the selective analysis of the subset of newly synthesized cellular proteins produced in response to a biological stimulus. In BONCAT, cells are treated with the non-canonical amino acid L-azidohomoalanine (Aha), which is utilized in protein synthesis in place of methionine by wild-type translational machinery. Nascent, Aha-labeled proteins are selectively ligated to affinity tags for enrichment and subsequently identified via mass spectrometry. The work presented in this thesis exhibits advancements in and applications of the BONCAT technology that establishes it as an effective tool for analyzing proteome dynamics with time-resolved precision.
Chapter 1 introduces the BONCAT method and serves as an outline for the thesis as a whole. I discuss motivations behind the methodological advancements in Chapter 2 and the biological applications in Chapters 2 and 3.
Chapter 2 presents methodological developments that make BONCAT a proteomic tool capable of, in addition to identifying newly synthesized proteins, accurately quantifying rates of protein synthesis. I demonstrate that this quantitative BONCAT approach can measure proteome-wide patterns of protein synthesis at time scales inaccessible to alternative techniques.
In Chapter 3, I use BONCAT to study the biological function of the small RNA regulator CyaR in Escherichia coli. I correctly identify previously known CyaR targets, and validate several new CyaR targets, expanding the functional roles of the sRNA regulator.
In Chapter 4, I use BONCAT to measure the proteomic profile of the quorum sensing bacterium Vibrio harveyi during the time-dependent transition from individual- to group-behaviors. My analysis reveals new quorum-sensing-regulated proteins with diverse functions, including transcription factors, chemotaxis proteins, transport proteins, and proteins involved in iron homeostasis.
Overall, this work describes how to use BONCAT to perform quantitative, time-resolved proteomic analysis and demonstrates that these measurements can be used to study a broad range of biological processes.
Resumo:
Alpha-1-antitrypsin (A1AT) deficiency is characterized by increased neutrophil elastase (NE) activity and oxidative stress in the lung. We hypothesized that NE exposure generates reactive oxygen species by increasing lung nonheme iron. To test this hypothesis, we measured bronchoalveolar lavage (BAL) iron and ferritin levels, using inductively coupled plasma (ICP) optical emission spectroscopy and an ELISA, respectively, in A1AT-deficient patients and healthy subjects. To confirm the role of NE in regulating lung iron homeostasis, we administered intratracheally NE or control buffer to rats and measured BAL and lung iron and ferritin. Our results demonstrated that A1AT-deficient patients and rats postelastase exposure have elevated levels of iron and ferritin in the BAL. To investigate the mechanism of NE-induced increased iron levels, we exposed normal human airway epithelial cells to either NE or control vehicle in the presence or absence of ferritin, and quantified intracellular iron uptake using calcein fluorescence and ICP mass spectroscopy. We also tested whether NE degraded ferritin in vitro using ELISA and western analysis. We demonstrated in vitro that NE increased intracellular nonheme iron levels and degraded ferritin. Our results suggest that NE digests ferritin increasing the extracellular iron pool available for cellular uptake.
Resumo:
Tese de doutoramento, Biologia (Biologia Molecular), Universidade de Lisboa, Faculdade de Ciências, 2013
Resumo:
Le fer est un oligo-élément nécessaire pour le fonctionnement normal de toutes les cellules de l'organisme et joue un rôle essentiel dans de nombreuses fonctions biologiques. Cependant, le niveau de fer dans le corps doit être bien réglé, sinon la carence en fer entraine des divers états pathologiques tels que l'anémie et la diminution de l’immunité. D'autre part, une surcharge en fer potentialise la multiplication des germes, aggrave l’infection et la formation de radicaux libres ayant des effets toxiques sur les cellules et leurs composants, ce qui favorise les maladies cardio-vasculaires, l'inflammation et le cancer. L'hepcidine (HAMP), un régulateur négatif de l'absorption du fer, induit la dégradation de la ferroportine (FPN), le seul exportateur connu de fer ce qui réduit sa libération par les macrophages et inhibe son absorption gastro-intestinale. HAMP est synthétisé principalement par les hépatocytes, mais aussi par les macrophages. Cependant, il y a très peu de données sur la façon dont HAMP est régulé au niveau des macrophages. Plus récemment, nous avons constaté que l’induction de l’hepcidin dans le foie par le polysaccharide (LPS) est dépendante de la voie de signalisation médiée par « Toll-like receptor 4 » (TLR4). Grâce au TLR4, le LPS induit l'activation des macrophages qui sécrètent de nombreuses différentes cytokines inflammatoires, y compris Interleukine 6 (IL-6), responsable de l'expression de HAMP hépatique. Dans le premier chapitre de la présente étude, nous avons étudié la régulation de HAMP dans la lignée cellulaire macrophagique RAW264.7 et dans les macrophages péritonéaux murins stimulés par différents ligands des TLRs. Nous avons constaté que TLR2 et TLR4 par l'intermédiaire de la protéine adaptatrice « myeloid differentiation primary response gene 88 » (MyD88) activent l'expression de HAMP dans les cellules RAW264.7 et les macrophages péritonéaux sauvages murins, tandis que cette expression a été supprimée dans les macrophages isolés des souris TLR2-/-, TLR4-déficiente ou MyD88-/-. En outre, nous avons constaté que la production d'IL-6 par les cellules RAW264.7 stimulées avec du LPS a été renforcée par l’ajout des quantités élevées de fer dans le milieu de culture. Au cours de l’inflammation, le niveau de HAMP est fortement augmenté. Ainsi, lorsque l'inflammation persiste, l’expression de HAMP continue à être activée par des cytokines pro-inflammatoires conduisant à une hyposidérémie. Malgré que cette dernière soit considérée comme une défense de l'hôte pour priver les micro-organismes de fer, celle ci cause un développement d'anémies nommées anémies des maladies chroniques. Ainsi, dans le deuxième chapitre de la présente étude, nous avons étudié l'implication des TLRs et leurs protéines adaptatrices MyD88 et TIR-domain-containing adapter-inducing interferon-β (TRIF) dans le développement des hyposidérémies. En utilisant des souris déficientes en MyD88 et TRIF, nous avons montré que les voies de signalisations MyD88 et TRIF sont essentielles pour l’induction de HAMP par le LPS. Malgré l'absence de HAMP, les souris déficientes ont été capables de développer une hyposidérémie, mais la réponse des souris déficientes en MyD88 a été très légère, ce qui indique l'exigence de cette protéine pour assurer une réponse maximale au LPS. En outre, nous avons constaté que la signalisation MyD88 est nécessaire pour le stockage du fer au niveau de la rate, ainsi que l'induction de lipocaline 2 (LCN2), qui est une protéine impliquée dans la fixation du fer pour limiter la croissance bactérienne. Indépendamment de MyD88 ou TRIF, l'activation de TLR4 et TLR3 a conduit, au niveau de la rate, à une diminution rapide de l’expression de FPN et du « Human hemochromatosis protein » (HFE) qui est une protéine qui limite la séquestration du fer cellulaire à partir de la circulation. Cependant, malgré cette baisse d’expression, le manque de la signalisation MyD88 a altéré de manière significative la réponse hyposidérémique. En établissant le rôle des TLRs et de la protéine adaptatrice MyD88 dans la diminution du taux du fer sérique au cours de la réponse inflammatoire, nous avons remarqué qu’en réponse au surcharge en fer les souris déficientes en MyD88 accumulent de manière significative plus de fer hépatique par rapport aux souris sauvages, et cela indépendamment des TLRs. Ainsi, dans le troisième chapitre de la présente étude, nous avons étudié le phénotype observé chez les souris déficientes en MyD88. Nous avons trouvé que l'expression de HAMP chez ces souris a été plus faible que celle des souris de type sauvage. Pour cela, nous avons exploré la signalisation à travers la voie du « Bone Morphogenetic Proteins 6 » (BMP6) qui est considérée comme étant la voie fondamentale de la régulation de HAMP en réponse aux concentrations du fer intracellulaires et extracellulaires et nous avons trouvé que l'expression protéique de Smad4, un régulateur positif de l'expression de HAMP, est significativement plus faible chez les souris MyD88-/- par rapport aux souris sauvages. En outre, on a montré que MyD88 interagit avec « mothers against decapentaplegic, Drosophila, homolog 4 » (Smad4) et que cette interaction est essentielle pour l’induction de HAMP à travers la voie BMP6. En conclusion, notre étude montre que l'expression de HAMP dans les macrophages est régulée principalement par TLR2 et TLR4 à travers la voie MyD88 et que l'accumulation du fer dans les macrophages peut affecter les niveaux des cytokines pro-inflammatoires. En outre, nos analyses démontrent que le développement d’hyposidérémie en réponse au LPS se produit par l'intermédiaire d’un mécanisme dépendant de MyD88 qui est dissociée de la production de cytokines et de HAMP. En plus, nos recherches montrent que MyD88 est nécessaire pour l'expression de Smad4 et cela pour garantir une réponse optimale à travers la signalisation BMP6, conduisant ainsi à une expression adéquate de HAMP. Enfin, la protéine MyD88 joue un rôle crucial dans, la régulation de HAMP au niveau des macrophages, la diminution du taux du fer sérique en réponse au LPS et le maintien de l'homéostasie du fer.
Resumo:
Hepcidin is a highly conserved disulfide-bonded peptide that plays a central role in iron homeostasis. During systemic inflammation, hepcidin up-regulation is responsible for hypoferremia. This study aimed to analyze the influence of the inflammatory process induced by complete Freund's adjuvant (CFA) or lipopolysaccharide (LPS) on the liver expression of hepcidin mRNA transcripts and plasma iron concentration of sheep. The expression levels of hepcidin transcripts were up-regulated after CFA or LPS. Hypoferremic response was observed at 12 h (15.46 +/- 6.05 mu mol/L) or 6 h (14.59 +/- 4.38 mu mol/L) and iron reached its lowest level at 96 h (3.08 +/- 1.18 mu mol/L) or 16 h (4.06 +/- 1.58 mu mol/L) after CFA administration or LPS infusion, respectively. This study demonstrated that the iron regulatory hormone hepcidin was up-regulated in sheep liver in response to systemic inflammation. These findings extend our knowledge on the relationship between the systemic inflammatory response, hepcidin and iron, and provide a starting point for additional studies on iron metabolism and the inflammatory process in sheep. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In this work we have made use of the study of the interaction between Fe(TDCPP)(+) and the axial ligands OH- and imidazole in order to help characterize the heterogenized catalysts Fe(TDCPP)SG and Fe(TDCPP)IPG through UV-VIS and EPR spectroscopies and thus, better understand their different catalytic activity in the oxidation of cyclohexane by PhIO. We have found out that in Fe(TDCPP)SG (containing 1.2 X 10(-6) mol Fe(TDCPP)(+)/g of support), the FeP bis-coordinates to silica gel through Fe-O coordination and it is high-spin (FeP)-P-III species. In Fe(TDCPP)IPG 1 (containing 1.1 X 10(-6) mol Fe(TDCPP)(+) and 2.2 X 10(-4) mol imidazole/g of support), the FeP is bis-ligated to imidazole propyl gel through Fe-imidazole coordination and using NO as a paramagnetic probe, we present evidence that Fe(TDCPP)(+) is present as a mixture of low-spin (FeP)-P-III and (FeP)-P-II species. This catalyst led to a relative low yield of cyclohexanol (25%) because the bis-coordination of the (FeP)-P-III to the support partially blocks the reaction between Fe(TDCPP)(+) and PhIO, thus leading to the formation of only a small amount of the active species Fe-IV(OP+, while the (FeP)-P-II species do not react with the oxygen donor. Increasing the amount of Fe(TDCPP)(+) and decreasing the amount of imidazole in the support led to the obtention of high-spin (FeP)-P-III EPR signals in the spectra of Fe(TDCPP)IPG 5 (containing 4.4 X 10(-6) mol Fe(TDCPP)(+) and 2.2 X 10(-5) mol imidazole/g of IPG), together with low-spin (FeP)-P-III species. This latter catalyst led to better cyclohexanol yields (67%) than Fe(TDCPP)IPG 1. Fe(TDCPP)IPG 5 was further used in a study of the optimization of its catalytic activity and in recycling experiments in the optimized conditions. Recycling oxidation reactions of Fe(TDCPP)IPG 5 led to a total turnover number of 201 and total cyclohexanol yield of 201%, which could not be attained with Fe(TDCPP)Cl in homogeneous solution (turnover = 96) due to the difficulty in recovering and reusing it.