970 resultados para Inhibitory effect
Resumo:
We investigated the effect of photodynamic therapy (PDT) and of an anti-vascular cell adhesion molecule-1 (VCAM-1) monoclonal antibody on the in vivo growth of C6 glioma. Seven days after inoculation with C6 cells, adult male Wistar rats weighing 280-300 g with MRI-confirmed glioma were randomly assigned to 4 groups (N = 15 per group): PDT + VCAM-1 antibody group; PDT group; VCAM-1 antibody group; control group. Eight days after inoculation, hematoporphyrin monomethyl ether (HMME) was administered as a photosensitizer and PDT was performed at 630 nm (illumination intensity: 360 J/cm²) for 10 min. VCAM-1 antibody (50 µg/mL) was then administered (0.5 mL) through the tail vein every other day from day 8 to day 16. At day 21, 5 rats in each group were sacrificed and cancers were harvested for immunohistochemistry and Western blot assay for the detection of VCAM-1, and TUNEL assay was used to detect apoptosis. Survival and tumor volume were recorded in the remaining 10 rats in each group. In the PDT group, tumor growth was significantly suppressed (67.2%) and survival prolonged (89.3%), accompanied by an increase in apoptosis (369.5%), when compared to control. Furthermore, these changes were more pronounced in the PDT + VCAM-1 antibody group. After PDT, VCAM-1 expression was markedly increased (121.8%) and after VCAM-1 monoclonal antibody treatment, VCAM-1 expression was significantly reduced (58.2%). PDT in combination with VCAM-1 antibody can significantly inhibit the growth of C6 glioma and prolong survival. This approach may represent a promising strategy in the treatment of glioma.
Resumo:
Immune response plays an important role in the development of hepatic fibrosis. In the present study, we investigated the effects of quercetin on hepatitis and hepatic fibrosis induced by immunological mechanism. In the acute hepatitis model, quercetin (2.5 mg/kg) was injected iv into mice 30 min after concanavalin A (Con A) challenge. Mice were sacrificed 4 or 24 h after Con A injection, and aminotransferase tests and histopathological sections were performed. Treatment with quercetin significantly decreased the levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Consistent with this observation, treatment with quercetin markedly attenuated the pathologic changes in the liver. A hepatic fibrosis model was also generated in mice by Con A challenge once a week for 6 consecutive weeks. Mice in the experimental group were treated with daily iv injections of quercetin (0.5 mg/kg). Histopathological analyses revealed that treatment with quercetin markedly decreased collagen deposition, pseudolobuli development, and hepatic stellate cells activation. We also examined the effects of quercetin on the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and transforming growth factor beta (TGF-β) pathways by immunohistochemistry and real-time reverse transcriptase-polymerase chain reaction (RT-PCR). NF-κB and TGF-β production was decreased after treatment with quercetin, indicating that the antifibrotic effect of quercetin is associated with its ability to modulate NF-κB and TGF-β production. These results suggest that quercetin may be an effective therapeutic strategy in the treatment of patients with liver damage and fibrosis.
Resumo:
Cinnamomum zeylanicum Blume, Lauraceae, has long been known for having many biological properties. This study aimed to identify the constituents of the essential oil from C. zeylanicum leaves using GC-MS and to assess its inhibitory effect on Salmonella enterica, Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa based on MIC and MBC determination and kill-time study. Eugenol (73.27%) was the most prevalent compound in the essential oil followed by trans-β-cariophyllene (5.38%), linalool (3.31%), and alcohol cinamic acetate (2.53%). The results showed an interesting antibacterial activity of the oil with MIC ranging from 1.25 to 10 µL.mL-1. MBC values were in the range of 20 - 80 µL.mL-1. A concentration of 10 and 40 µL.mL-1 of the essential oil caused a fast and steady decrease in viable cell count (2 to 5 log cycles) of all assayed strains along 24 hours. A concentration of 40 µL.mL-1 of the oil provided a total elimination of the initial inocula of S. aureus after 2 hours. These results show the possibility of regarding the essential oil from C. zeylanicum leaves as alternative sources of antimicrobial compounds to be applied in food conservation systems.
Resumo:
Coalho cheese (a firm but very lightweight cheese produced in Brazil) is widely produced and consumed in the Brazilian Northeast and its production has been mainly related to small farmers. This food has been frequently characterized as having high microbial load posing a risk for the health of consumers. This study aimed to indentify the chemical compounds of the essential oil from Eugenia caryophyllata leaves; to evaluate the inhibitory effect of the oil against coalho cheese contaminating microorganisms; and to assess its efficacy in inhibiting the autochthonous microflora of the cheese during refrigerated storage. Eugenol (74%) was found to be the most prevalent compound in the essential oil. Minimum Inhibitory Concentration (MIC) and Minimum Cidal Concentration (MCC) in laboratorial broth were in the range of 2.5-5 and 5-20 µg.mL-1, respectively. Vaccum packed coalho cheese added with 5, 10, and 20 µg.g-1 of oil showed a lower growth rate (like-static effect) against mesophilic bacteria during the time intervals evaluated. On the other hand, 2.5-10 µg.g-1 of oil provided a prominent decrease toward fungi count in cheese samples during storage. These results reveal the interesting antimicrobial property of the essential oil from E. caryophyllata leaves against a range of coalho cheese-related microorganisms in laboratorial media and in food matrix.
Resumo:
The aims of this study were to (i) compare the inhibitory effects of the natural microflora of different foods on the growth of Listeria monocytogenes during enrichment in selective and non-selective broths; (ii) to isolate and identify components of the microflora of the most inhibitory food; and (iii) to determine which of these components was most inhibitory to growth of L. monocytogenes in co-culture studies. Growth of an antibioticresistant marker strain of L. monocytogenes was examined during enrichment of a range of different foods in Tryptone Soya Broth (TSB), Half Fraser Broth (HFB) and Oxoid Novel Enrichment (ONE) Broth. Inhibition of L. monocytogenes was greatest in the presence of minced beef, salami and soft cheese and least with prepared fresh salad and chicken pâté. For any particular food the numbers of L. monocytogenes present after 24 h enrichment in different broths increased in the order: TSB, HFB and ONE Broth. Numbers of L. monocytogenes recovered after enrichment in TSB were inversely related to the initial aerobic plate count (APC) in the food but with only a moderate coefficient of determination (R2) of 0.51 implying that microbial numbers and the composition of the microflora both influenced the degree of inhibition of L. monocytogenes. In HFB and ONE Broth the relationship between APC and final L. monocytogenes counts was weaker. The microflora of TSB after 24 h enrichment of minced beef consisted of lactic acid bacteria, Brochothrix thermosphacta, Pseudomonas spp., Enterobacteriaceae, and enterococci. In co-culture studies of L. monocytogenes with different components of the microflora in TSB, the lactic acid bacteria were the most inhibitory followed by the Enterobacteriaceae. The least inhibitory organisms were Pseudomonas sp., enterococci and B. thermosphacta. In HFB and ONE Broth the growth of Gram-negative organisms was inhibited but lactic acid bacteria still reached high numbers after 24 h. A more detailed study of the growth of low numbers of L. monocytogenes during enrichment of minced beef in TSB revealed that growth of L. monocytogenes ceased at a cell concentration of about 102 cfu/ml when lactic acid bacteria entered stationary phase. However in ONE Broth growth of lactic acid bacteria was slower than in TSB with a longer lag time allowing L. monocytogenes to achieve much higher numbers before lactic acid bacteria reached stationary phase. This work has identified the relative inhibitory effects of different components of a natural food microflora and shown that the ability of low numbers of L. monocytogenes to achieve high cell concentrations is highly dependent on the extent to which enrichment media are able to inhibit or delay growth of the more effective competitors.
Resumo:
Mast cell tumor (MCT) is one of the most prevalent neoplasms that affect skin and soft tissue in dogs. Because mast cell tumors present a great variety of clinical appearance and behavior, their treatment becomes a challenge. Trichostatin A (TSA), an antifungal antibiotic, has shown inhibitory effects on the proliferation and induction of apoptosis in various types of cancer cells. In order to evaluate the potential of trichostatin A as a therapeutic drug, cells of grade 3 MCT were cultured and treated with concentrations of 1 nM to 400 nM of TSA. MTT assay and trypan blue exclusion assays were performed to estimate cell growth and cell viability, and cell cycle analysis was evaluated. TSA treatment showed a reduction in numbers of viable cells and an increase of cell death by apoptosis. The cell cycle analysis showed an increase of hypodiploid cells and a reduction of G0/G1 and G2/M -phases. According to these results, trichostatin A may be an interesting potential chemotherapeutic agent for the treatment of canine MCT.
Resumo:
Apocynin, a methoxy-substituted catechol (4-hydroxy-3-methoxyacetophenone), originally extracted from the roots of Picrorhiza kurroa, has been extensively used as a non-toxic inhibitor of the multienzymatic complex NADPH oxidase. We discovered that the analogous methoxy-substituted catechol, 4-Fluoro-2-methoxyphenol (F-apocynin), in which the acetyl group present in apocynin was changed to a fluorine atom, was significantly more potent as an inhibitor of NADPH oxidase activity, myeloperoxidase (MPO) chlorinating activity and phagocytosis of microorganisms by neutrophils; it was also as potent as apocynin in inhibiting tumor necrosis factor-alpha (TNF alpha) release by peripheral blood mononuclear cells. We attribute the increased potency of F-apocynin to its increased lipophilicity, which could facilitate the passage of the drug through the cell membrane. The inhibition of MPO chlorination activity, phagocytosis and TNF alpha release shows that apocynin and F-apocynin actions are not restricted to reactive oxygen species inhibition, but further studies are needed to clarify if these mechanisms are related. Like apocynin, F-apocynin did not show cell toxicity, and is a strong candidate for use in the treatment of inflammatory diseases. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
SBTX, a novel toxin from soybean, was purified by ammonium sulfate fractionation followed by chromatographic steps DEAE-Cellulose, CM-Sepharose and Superdex 200 HR fast-protein liquid chromatography (FPLC). Lethality of SBTX to mice (LD50 5.6 mg/kg) was used as parameter in the purification steps. SBTX is a 44-kDa basic glycoprotein composed of two polypeptide chains (27 and 17 kDa) linked by a disulfide bond. The N-terminal sequences of the 44 and 27 kDa chains were identical (ADPTFGFTPLGLSEKANLQIMKAYD), differing from that of 17 kDa (PNPKVFFDMTIGGQSAGRIVMEEYA). SBTX contains high levels of Glx, Ala, Asx, Gly and Lys and showed maximum absorption at 280 nm, epsilon(1 cm) (1%) of 6.3, and fluorescence emission in the 290-450nm range upon excitation at 280nm. The secondary structure content was 35% alpha-helix, 13% beta-strand and beta-sheet, 27% beta-turn, 25% unordered, and 1% aromatic residues. Immunological assays showed that SBTX was related to other toxic proteins, such as soyatoxin and canatoxin, and cross-reacted weekly with soybean trypsin inhibitor and agglutinin, but it was devoid of protease-inhibitory and hemagglutinating activities. The inhibitory effect of SBTX on growth of Cercospora sojina, fungus causing frogeye leaf spot in soybeans, was observed at 50 mu g/ml, concentration 112 times lesser than that found to be lethal to mice. This effect on phytopathogenic fungus is a potential attribute for the development of transgenic plants with enhanced resistance to pathogens. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The protective effect of gallic acid and its esters, methyl, propyl, and lauryl gallate, against 2,2'-azobis(2-amidinopropane)hydrochloride (AAPH)-induced hemolysis and depletion of intracellular glutathione (GSH) in erythrocytes was studied. The inhibition of hemolysis was dose-dependent, and the esters were significantly more effective than gallic acid. Gallic acid and its esters were compared with regard to their reactivity to free radicals, using the DPPH and AAPH/pyranine free-cell assays, and no significant difference was obtained. Gallic acid and its esters not only failed to inhibit the depletion of intracellular GSH in erythrocytes induced by AAPH but exacerbated it. Similarly, the oxidation of GSH by AAPH or horseradish peroxidase/H(2)O(2) in cell-free systems was exacerbated by gallic acid or gallates. This property could be involved in the recent findings on proapoptotic and pro-oxidant activities of gallates in tumor cells. We provide evidence that lipophilicity and not only radical scavenger potency is an important factor regarding the efficiency of antihemolytic substances.
Resumo:
The antimutagenic effect of ethanolic extract of propolis (EEP) and honeybee (Apis mellifera) venom, both collected in the State of Sb Paulo, Brazil, was assessed by the Salmonella/microsome assay upon direct- and indirect-acting mutagens. EEP had inhibitory effect (in an ascending order) on the mutagenicity power of daunomycin (TA102), benzo(a)pyrene (TA100), and aflatoxin B-1(TA98) and the venom acted against the mutagenicity of 4-nitro-o-phenylenediamine (TA98) and daunomycin (TA102). (C) 1999 Wiley-Liss, Inc.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The use of essential oils in foods has attracted great interest, due to their antagonistic action against pathogenic microorganisms. However, this action is undesirable for probiotic foods, as products containing Lactobacillus rhamnosus. The aim of the present study was to measure the sensitivity profile of L. rhamnosus and a yogurt starter culture in fermented milk, upon addition of increasing concentrations of cinnamon, clove and mint essential oils. Essential oils were prepared by steam distillation, and chemically characterised by gas chromatography-mass spectrometry (GC-MS) and determination of density. Survival curves were obtained from counts of L. rhamnosus and the starter culture (alone and in combination), upon addition of 0.04% essential oils. In parallel, titratable acidity was monitored over 28 experimental days. Minimum inhibitory concentration values, obtained using the microdilution method in Brain Heart Infusion medium, were 0.025, 0.2 and 0.4% for cinnamon, clove and mint essential oils, respectively. Cinnamon essential oil had the highest antimicrobial activity, especially against the starter culture, interfering with lactic acid production. Although viable cell counts of L. rhamnosus were lower following treatment with all 3 essential oils, relative to controls, these results were not statistically significant; in addition, cell counts remained greater than the minimum count of 10(8)CFU/mL required for a product to be considered a probiotic. Thus, although use of cinnamon essential oil in yogurt makes starter culture fermentation unfeasible, it does not prevent the application of L. rhamnosus to probiotic fermented milk. Furthermore, clove and mint essential oil caused sublethal stress to L. rhamnosus.
Resumo:
Leukotrienes are classic inflammatory response mediators considered chemotactic agents and microbicidal activity regulators in cells of the innate immune system, playing a protective role against different infectious agents. In this study, we investigated the involvement of leukotrienes in the course of murine paracoccidioidomycosis based on the following immunologic parameters: cell influx, mieloperoxydase activity, NO production, cytokine production, and fungal recovery in lungs of mice selected according to the intensity of their low (AIRmin) and high (AIRmax) acute inflammatory response. Infection by P. brasiliensis induced considerable production of IL-6, IL-10, IFN-gamma and TNF-alpha cytokines, and led to cell recruitment, as well as NO production in lungs at different study periods. In animals treated with MK886, a leukotriene biosynthesis inhibitor, IFN-gamma, IL-6 and TNF-alpha production was lower, while neutrophil influx and NO production decreased. These results may explain the higher fungal load in lungs of animals in which leukotriene synthesis was inhibited, suggesting that leukotrienes have a possible protective role in experimental paracoccidioidomycosis. AIRmax animals had lower fungal load in comparison with AIRmin ones, which can be related to the AIR phenotype regarding neutrophil migration, besides lower production of NO and pro-inflammatory cytokines. Thus, mice presenting AIRmax background are more resistant to infection by P. brasiliensis.