985 resultados para In Silico Trial,Osteoporosi,Rischio di frattura,ARF0,ARF5
Resumo:
Metabolic syndrome has been associated with an increased risk of various cancers. A multicenter study conducted in Italy and Switzerland on 3,869 cases of breast cancer in post-menopause reported a relative risk of 1.75 in women with the metabolic syndrome, confirming the results of other smaller epidemiological studies.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Il presente lavoro di tesi si colloca nell’ambito della valutazione del rischio di incidente rilevante. Ai sensi della normativa europea (direttive Seveso) e del loro recepimento nella legislazione nazionale (D.Lgs. 334/99 e s.m.i.) un incidente rilevante è costituito da un evento incidentale connesso al rilascio di sostanze pericolose in grado di causare rilevanti danni all’uomo e/o all’ambiente. Ora, se da un lato esistono indici di rischio quantitativi per il bersaglio ”uomo” da tempo definiti e universalmente adottati nonché metodologie standardizzate e condivise per il loro calcolo, dall’altro non vi sono analoghi indici di rischio per il bersaglio “ambiente” comunemente accettati né, conseguentemente, procedure per il loro calcolo. Mancano pertanto anche definizioni e metodologie di calcolo di indici di rischio complessivo, che tengano conto di entrambi i bersagli citati dalla normativa. Al fine di colmare questa lacuna metodologica, che di fatto non consente di dare pieno adempimento alle stesse disposizioni legislative, è stata sviluppata all’interno del Dipartimento di Ingegneria Chimica, Mineraria e delle Tecnologie Ambientali dell’Università degli Studi di Bologna una ricerca che ha portato alla definizione di indici di rischio per il bersaglio “ambiente” e alla messa a punto di una procedura per la loro stima. L’attenzione è stata rivolta in modo specifico al comparto ambientale del suolo e delle acque sotterranee (falda freatica) ed ai rilasci accidentali da condotte di sostanze idrocarburiche immiscibili e più leggere dell’acqua, ovvero alle sostanze cosiddette NAPL – Non Acqueous Phase Liquid, con proprietà di infiammabilità e tossicità. Nello specifico si sono definiti per il bersaglio “ambiente” un indice di rischio ambientale locale rappresentato, punto per punto lungo il percorso della condotta, dai volumi di suolo e di acqua contaminata, nonché indici di rischio ambientale sociale rappresentati da curve F/Vsuolo e F/Sacque, essendo F la frequenza con cui si hanno incidenti in grado di provocare contaminazioni di volumi di suolo e di superfici di falda uguali o superiori a Vsuolo e Sacque. Tramite i costi unitari di decontaminazione del suolo e delle acque gli indici di rischio ambientale sociale possono essere trasformati in indici di rischio ambientale sociale monetizzato, ovvero in curve F/Msuolo e F/Macque, essendo F la frequenza con cui si hanno incidenti in grado di provocare inquinamento di suolo e di acque la cui decontaminazione ha costi uguali o superiori a Msuolo ed Macque. Dalla combinazione delle curve F/Msuolo e F/Macque è possibile ottenere la curva F/Mambiente, che esprime la frequenza degli eventi incidentali in grado di causare un danno ambientale di costo uguale o superiore a Mambiente. Dalla curva di rischio sociale per l’uomo ovvero dalla curva F/Nmorti, essendo F la frequenza con cui si verificano incidenti in grado di determinare un numero di morti maggiore o uguale ad Nmorti, tramite il costo unitario della vita umana VSL (Value of a Statistical Life), è possibile ottenete la curva F/Mmorti, essendo F la frequenza con cui si verificano incidenti in grado di determinare un danno monetizzato all’uomo uguale o superiore ad Mmorti. Dalla combinazione delle curve F/Mambiente ed F/Mmorti è possibile ottenere un indice di rischio sociale complessivo F/Mtotale, essendo F la frequenza con cui si verifica un danno economico complessivo uguale o superiore ad Mtotale. La procedura ora descritta è stata implementata in un apposito software ad interfaccia GIS denominato TRAT-GIS 4.1, al fine di facilitare gli onerosi calcoli richiesti nella fase di ricomposizione degli indici di rischio. La metodologia è stata fino ad ora applicata ad alcuni semplici casi di studio fittizi di modeste dimensioni e, limitatamente al calcolo del rischio per il bersaglio “ambiente”, ad un solo caso reale comunque descritto in modo semplificato. Il presente lavoro di tesi rappresenta la sua prima applicazione ad un caso di studio reale, per il quale sono stati calcolati gli indici di rischio per l’uomo, per l’ambiente e complessivi. Tale caso di studio è costituito dalla condotta che si estende, su un tracciato di 124 km, da Porto Marghera (VE) a Mantova e che trasporta greggi petroliferi. La prima parte del lavoro di tesi è consistita nella raccolta e sistematizzazione dei dati necessari alla stima delle frequenze di accadimento e delle conseguenze per l’uomo e per l’ambiente degli eventi dannosi che dalla condotta possono avere origine. In una seconda fase si è proceduto al calcolo di tali frequenze e conseguenze. I dati reperiti hanno riguardato innanzitutto il sistema “condotta”, del quale sono stati reperiti da un lato dati costruttivi (quali il diametro, la profondità di interramento, la posizione delle valvole sezionamento) e operativi (quali la portata, il profilo di pressione, le caratteristiche del greggio), dall’altro informazioni relative alle misure di emergenza automatiche e procedurali in caso di rilascio, al fine di stimare le frequenze di accadimento ed i termini “sorgente” (ovvero le portate di rilascio) in caso di rotture accidentali per ogni punto della condotta. In considerazione delle particolarità della condotta in esame è stata sviluppata una procedura specifica per il calcolo dei termini sorgente, fortemente dipendenti dai tempi degli interventi di emergenza in caso di rilascio. Una ulteriore fase di raccolta e sistematizzazione dei dati ha riguardato le informazioni relative all’ambiente nel quale è posta la condotta. Ai fini del calcolo del rischio per il bersaglio “uomo” si sono elaborati i dati di densità abitativa nei 41 comuni attraversati dall’oleodotto. Il calcolo dell’estensione degli scenari incidentali dannosi per l’uomo è stato poi effettuato tramite il software commerciale PHAST. Allo scopo della stima del rischio per il bersaglio “ambiente” è stata invece effettuata la caratterizzazione tessiturale dei suoli sui quali corre l’oleodotto (tramite l’individuazione di 5 categorie di terreno caratterizzate da diversi parametri podologici) e la determinazione della profondità della falda freatica, al fine di poter calcolare l’estensione della contaminazione punto per punto lungo la condotta, effettuando in tal modo l’analisi delle conseguenze per gli scenari incidentali dannosi per l’ambiente. Tale calcolo è stato effettuato con il software HSSM - Hydrocarbon Spill Screening Model gratuitamente distribuito da US-EPA. La ricomposizione del rischio, basata sui risultati ottenuti con i software PHAST e HSSM, ha occupato la terza ed ultima fase del lavoro di tesi; essa è stata effettuata tramite il software TRAT-GIS 4.1, ottenendo in forma sia grafica che alfanumerica gli indici di rischio precedentemente definiti. L’applicazione della procedura di valutazione del rischio al caso dell’oleodotto ha dimostrato come sia possibile un’analisi quantificata del rischio per l’uomo, per l’ambiente e complessivo anche per complessi casi reali di grandi dimensioni. Gli indici rischio ottenuti consentono infatti di individuare i punti più critici della condotta e la procedura messa a punto per il loro calcolo permette di testare l’efficacia di misure preventive e protettive adottabili per la riduzione del rischio stesso, fornendo al tempo gli elementi per un’analisi costi/benefici connessa all’implementazione di tali misure. Lo studio effettuato per la condotta esaminata ha inoltre fornito suggerimenti per introdurre in alcuni punti della metodologia delle modifiche migliorative, nonché per facilitare l’analisi tramite il software TRAT-GIS 4.1 di casi di studio di grandi dimensioni.
Resumo:
Nella definizione di incidente rilevante presente nelle Direttive Seveso, come pure nel loro recepimento nella legislazione italiana, rientrano eventi incidentali che abbiano conseguenze gravi per il bersaglio “ambiente”, sia in concomitanza sia in assenza di effetti dannosi per l’uomo. Tuttavia, a fronte di questa attenzione al bersaglio “ambiente” citata dalle norme, si constata la mancanza di indici quantitativi per la stima del rischio di contaminazione per i diversi comparti ambientali e, conseguentemente, anche di metodologie per il loro calcolo. Misure di rischio quantitative consolidate e modelli condivisi per la loro stima riguardano esclusivamente l’uomo, con la conseguenza che la valutazione di rischio per il bersaglio “ambiente” rimane ad un livello qualitativo o, al più, semi-quantitativo. Questa lacuna metodologica non consente di dare una piena attuazione al controllo ed alla riduzione del rischio di incidente rilevante, secondo l’obiettivo che le norme stesse mirano a raggiungere. E d‘altra parte il verificarsi periodico di incidenti con significativi effetti dannosi per l’ambiente, quali, ad esempio lo sversamento di gasolio nel fiume Lambro avvenuto nel febbraio 2010, conferma come attuale e urgente il problema del controllo del rischio di contaminazione ambientale. La ricerca presentata in questo lavoro vuole rappresentare un contributo per colmare questa lacuna. L’attenzione è rivolta al comparto delle acque superficiali ed agli sversamenti di liquidi oleosi, ovvero di idrocarburi insolubili in acqua e più leggeri dell’acqua stessa. Nel caso in cui il rilascio accidentale di un liquido oleoso raggiunga un corso d’acqua superficiale, l’olio tenderà a formare una chiazza galleggiante in espansione trasportata dalla corrente e soggetta ad un complesso insieme di trasformazioni fisiche e chimiche, denominate fenomeni di “oil weathering”. Tra queste rientrano l’evaporazione della frazione più volatile dell’olio e la dispersione naturale dell’olio in acqua, ovvero la formazione di una emulsione olio-in-acqua nella colonna d’acqua al di sotto della chiazza di olio. Poiché la chiazza si muove solidale alla corrente, si può ragionevolmente ritenere che l’evaporato in atmosfera venga facilmente diluito e che quindi la concentrazione in aria dei composti evaporati non raggiunga concentrazioni pericolose esternamente alla chiazza stessa. L’effetto fisico dannoso associato allo sversamento accidentale può pertanto essere espresso in doversi modi: in termini di estensione superficiale della chiazza, di volume di olio che emulsifica nella colonna d’acqua, di volume della colonna che si presenta come emulsione olio-in-acqua, di lunghezza di costa contaminata. In funzione di questi effetti fisici è possibile definire degli indici di rischio ambientale analoghi alle curve di rischio sociale per l’uomo. Come una curva di rischio sociale per l’uomo esprime la frequenza cumulata in funzione del numero di morti, così le curve di rischio sociale ambientale riportano la frequenza cumulata in funzione dell’estensione superficiale della chiazza, ovvero la frequenza cumulata in funzione del volume di olio che emulsifica in acqua ovvero la frequenza cumulata in funzione del volume di colonna d’acqua contaminato ovvero la frequenza cumulata in funzione della lunghezza di costa contaminata. Il calcolo degli indici di rischio così definiti può essere effettuato secondo una procedura analoga al calcolo del rischio per l’uomo, ovvero secondo i seguenti passi: 1) descrizione della sorgente di rischio; 2) descrizione del corso d’acqua che può essere contaminato in caso di rilascio dalla sorgente di rischio; 3) identificazione, degli eventi di rilascio e stima della loro frequenza di accadimento; 4) stima, per ogni rilascio, degli effetti fisici in termini di area della chiazza, di volume di olio emulsificato in acqua, di volume dell’emulsione olio-in-acqua, lunghezza di costa contaminata; 5) ricomposizione, per tutti i rilasci, degli effetti fisici e delle corrispondenti frequenze di accadimento al fine di stimare gli indici di rischio sopra definiti. Al fine di validare la metodologia sopra descritta, ne è stata effettuata l’applicazione agli stabilimenti a rischio di incidente rilevante presenti nei bacini secondari che fanno parte del bacino primario del Po. E’ stato possibile calcolare gli indici di rischio per ogni stabilimento, sia in riferimento al corso d’acqua del bacino secondario a cui appartengono, sia in riferimento al Po, come pure ottenere degli indici di rischio complessivi per ogni affluente del Po e per il Po stesso. I risultati ottenuti hanno pienamente confermato la validità degli indici di rischio proposti al fine di ottenere una stima previsionale del rischio di contaminazione dei corsi d’acqua superficiali, i cui risultati possano essere utilizzati per verificare l’efficacia di diverse misure di riduzione del rischio e per effettuare una pianificazione d’emergenza che consenta, in caso di incidente, di contenere, recuperare e favorire la dispersione dell’olio sversato.
Resumo:
Nonostante negli ultimi anni si sia verificato un generale abbassamento degli infortuni sul lavoro, si rileva che gli incidenti legati alle esplosioni sono rimasti pressoché stazionari. Questo indica la necessità, sia di una maggiore aderenza delle soluzioni di limitazione dei rischi adottate, alle direttive nazionali ed europee pur introdotte in campo legislativo, sia – soprattutto – di asseverare processi di valutazione dei rischi medesimi, caso per caso presentati dalle differenti realtà produttive. Nel lavoro qui presentato si è proceduto, quindi, dopo un'introduzione sulle dinamiche dei fenomeni fisico-chimici che portano all’esplosione, a proporre ed illustrare una metodologia di analisi ed adeguamento alle principali normative in materia di ATEX, ovvero alle Direttive europee di riferimento e alle norme tecniche CEI specialistiche mediante un approccio classico di analisi del rischio. Fine ultimo di tale metodologia sarà la definizione del livello di riduzione del rischio ottenuto grazie all’adeguamento alle predette Direttive. Preliminarmente viene definita una procedura di ottimizzazione per l’individuazione e classificazione le sorgenti di emissione, sia di gas e vapori, che di polveri. Analogo ragionamento viene, poi, condotto per le principali fonti d’innesco delle nubi. Utilizzando opportuni software nel continuo si definisce il livello di rischio pre-adeguamento, le aree di maggiore criticità (in cui procedere agli interventi di prevenzione e protezione, materiali e organizzativi) e il livello di rischio residuo post-adeguamento. La metodologia è stata applicata al caso reale di un impianto per la distillazione dell’etanolo.
Resumo:
L’esigenza di affrontare la questione della tutela del mare dalle diverse fonti di inquinamento si è posta con forza soprattutto a partire al 1970, in parallelo con l’affinamento della sensibilità ambientale a fronte del crescente processo di industrializzazione in atto in tutto il mondo. Tuttavia, a fronte di questa attenzione al bersaglio “ambiente” citata dalle convenzioni e dalle norme, si constata la mancanza di indici quantitativi per la stima del rischio di contaminazione per tutti i comparti ambientali ed anche per il mare e, conseguentemente, anche l’assenza di metodologie per il loro calcolo. Misure di rischio quantitative consolidate e modelli condivisi per la loro stima riguardano esclusivamente l’uomo, con la conseguenza che la valutazione di rischio per il bersaglio “ambiente” rimane ad un livello qualitativo o, al più, semi-quantitativo. La ricerca presentata in questo lavoro vuole rappresentare un contributo per colmare questa lacuna. L’attenzione è rivolta al comparto delle acque marine ed agli sversamenti di liquidi oleosi, ovvero di idrocarburi insolubili in acqua e più leggeri dell’acqua stessa.
Resumo:
Oggetto di indagine del lavoro è il movimento ambientalista e culturale delle Città in Transizione che rappresentano esperimenti di ri-localizzazione delle risorse volte a preparare le comunità (paesi, città, quartieri) ad affrontare la duplice sfida del cambiamento climatico e del picco del petrolio. A partire dal Regno Unito, la rete delle Transition Towns si è in pochi anni estesa significativamente e conta oggi più di mille iniziative. L’indagine di tale movimento ha richiesto in prima battuta di focalizzare l’attenzione sul campo disciplinare della sociologia dell’ambiente. L’attenzione si è concentrata sul percorso di riconoscimento che ha reso la sociologia dell’ambiente una branca autonoma e sul percorso teorico-concettuale che ha caratterizzato la profonda spaccatura paradigmatica proposta da Catton e Dunlap, che hanno introdotto nel dibattito sociologico il Nuovo Paradigma Ecologico, prendendo le distanze dalla tradizionale visione antropocentrica della sociologia classica. Vengono poi presentate due delle più influenti prospettive teoriche della disciplina, quella del Treadmill of Production e la più attuale teoria della modernizzazione ecologica. La visione che viene adottata nel lavoro di tesi è quella proposta da Spaargaren, fautore della teoria della modernizzazione ecologica, secondo il quale la sociologia dell’ambiente può essere collocata in uno spazio intermedio che sta tra le scienze ambientali e la sociologia generale, evidenziando una vocazione interdisciplinare richiamata anche dal dibattito odierno sulla sostenibilità. Ma le evidenze empiriche progressivamente scaturite dallo studio di questo movimento che si autodefinisce culturale ed ambientalista hanno richiesto una cornice teorica più ampia, quella della modernità riflessiva e della società del rischio, in grado di fornire categorie concettuali spendibili nella descrizione dei problemi ambientali e nell’indagine del mutamento socio-culturale e dei suoi attori. I riferimenti empirici dello studio sono tre specifiche realtà locali in Transizione: York in Transition per il Regno Unito, Monteveglio (Bo) e Scandiano (Re) in Transizione per l’Italia.
Resumo:
Nell’ambito delle problematiche relative agli impianti a rischio di incidente rilevante, riscontra particolare interesse l’analisi dell’effetto domino, sia per la grande severità delle conseguenze degli eventi incidentali che esso comporta, sia per l’indeterminazione ancora presente nelle metodologie di analisi e di valutazione del fenomeno stesso. Per effetto domino si intende la propagazione di un evento incidentale primario dall’apparecchiatura dalla quale ha avuto origine alle apparecchiature circostanti, che diventano sorgenti di eventi incidentali secondari. Infatti elevati valori dell’irraggiamento, della sovrappressione di picco ed il lancio di proiettili, imputabili all’evento primario, possono innescare eventi secondari determinando una propagazione a catena dell’incidente così come si propaga la catena di mattoncini nel gioco da tavolo detto “domino”. Le Direttive Europee 96/82/EC e 2012/18/EU denominate, rispettivamente “Seveso II” e “Seveso III” stabiliscono la necessità, da parte del gestore, di valutare l’effetto domino, in particolare in aree industriali ad elevata concentrazione di attività a rischio di incidente rilevante. L’analisi consiste nel valutare, in termini di frequenza e magnitudo, gli effetti indotti su apparecchiature cosiddette “bersaglio” da scenari incidentali che producono irraggiamenti, onde di pressione e lancio di proiettili. Il presente lavoro di tesi, svolto presso lo stabilimento di Ravenna di ENI Versalis, ha lo scopo di presentare una metodologia per l’analisi dell’effetto domino adottata in un caso reale, in mancanza di un preciso riferimento normativo che fissi i criteri e le modalità di esecuzione di tale valutazione. Inoltre esso si presta a valutare tutte le azioni preventive atte a interrompere le sequenze incidentali e quindi i sistemi di prevenzione e protezione che possono contrastare un incidente primario evitando il propagarsi dell’incidente stesso e quindi il temuto effetto domino. L’elaborato è strutturato come segue. Dopo il Capitolo 1, avente carattere introduttivo con l’illustrazione delle linee guida e delle normative in riferimento all’effetto domino, nel Capitolo 2 sono descritte le principali tecniche di analisi di rischio che possono essere utilizzate per l’individuazione degli eventi incidentali credibili ovvero degli eventi incidentali primari e della loro frequenza di accadimento. Nel Capitolo 3 vengono esaminati i criteri impiegati da ENI Versalis per la valutazione dell’effetto domino. Nei Capitoli 4 e 5 sono descritti gli iter tecnico-procedurali messi a punto per la progettazione della protezione antincendio, rispettivamente attiva e passiva. Nel Capitolo 6 viene approfondito un aspetto particolarmente critico ovvero la valutazione della necessità di dotare di protezione le tubazioni. Nel Capitolo 7 viene illustrata la progettazione antifuoco di un caso di studio reale dello stabilimento ENI Versalis di Ravenna: l’unità di Idrogenazione Selettiva. Infine nel Capitolo 8 sono riportate alcune considerazioni conclusive.