888 resultados para Holomorphic Functions
Resumo:
In this work we study C (a)-hypoellipticity in spaces of ultradistributions for analytic linear partial differential operators. Our main tool is a new a-priori inequality, which is stated in terms of the behaviour of holomorphic functions on appropriate wedges. In particular, for sum of squares operators satisfying Hormander's condition, we thus obtain a new method for studying analytic hypoellipticity for such a class. We also show how this method can be explicitly applied by studying a model operator, which is constructed as a perturbation of the so-called Baouendi-Goulaouic operator.
Resumo:
The present thesis is a contribution to the multi-variable theory of Bergman and Hardy Toeplitz operators on spaces of holomorphic functions over finite and infinite dimensional domains. In particular, we focus on certain spectral invariant Frechet operator algebras F closely related to the local symbol behavior of Toeplitz operators in F. We summarize results due to B. Gramsch et.al. on the construction of Psi_0- and Psi^*-algebras in operator algebras and corresponding scales of generalized Sobolev spaces using commutator methods, generalized Laplacians and strongly continuous group actions. In the case of the Segal-Bargmann space H^2(C^n,m) of Gaussian square integrable entire functions on C^n we determine a class of vector-fields Y(C^n) supported in complex cones K. Further, we require that for any finite subset V of Y(C^n) the Toeplitz projection P is a smooth element in the Psi_0-algebra constructed by commutator methods with respect to V. As a result we obtain Psi_0- and Psi^*-operator algebras F localized in cones K. It is an immediate consequence that F contains all Toeplitz operators T_f with a symbol f of certain regularity in an open neighborhood of K. There is a natural unitary group action on H^2(C^n,m) which is induced by weighted shifts and unitary groups on C^n. We examine the corresponding Psi^*-algebra A of smooth elements in Toeplitz-C^*-algebras. Among other results sufficient conditions on the symbol f for T_f to belong to A are given in terms of estimates on its Berezin-transform. Local aspects of the Szegö projection P_s on the Heisenbeg group and the corresponding Toeplitz operators T_f with symbol f are studied. In this connection we apply a result due to Nagel and Stein which states that for any strictly pseudo-convex domain U the projection P_s is a pseudodifferential operator of exotic type (1/2, 1/2). The second part of this thesis is devoted to the infinite dimensional theory of Bergman and Hardy spaces and the corresponding Toeplitz operators. We give a new proof of a result observed by Boland and Waelbroeck. Namely, that the space of all holomorphic functions H(U) on an open subset U of a DFN-space (dual Frechet nuclear space) is a FN-space (Frechet nuclear space) equipped with the compact open topology. Using the nuclearity of H(U) we obtain Cauchy-Weil-type integral formulas for closed subalgebras A in H_b(U), the space of all bounded holomorphic functions on U, where A separates points. Further, we prove the existence of Hardy spaces of holomorphic functions on U corresponding to the abstract Shilov boundary S_A of A and with respect to a suitable boundary measure on S_A. Finally, for a domain U in a DFN-space or a polish spaces we consider the symmetrizations m_s of measures m on U by suitable representations of a group G in the group of homeomorphisms on U. In particular,in the case where m leads to Bergman spaces of holomorphic functions on U, the group G is compact and the representation is continuous we show that m_s defines a Bergman space of holomorphic functions on U as well. This leads to unitary group representations of G on L^p- and Bergman spaces inducing operator algebras of smooth elements related to the symmetries of U.
Resumo:
Suslin analytic sets characterize the sets of asymptotic values of entire holomorphic functions. By a theorem of Ahlfors, the set of asymptotic values is finite for a function with finite order of growth. Quasiregular maps are a natural generalization of holomorphic functions to dimensions n ≥ 3 and, in fact, many of the properties of holomorphic functions have counterparts for quasiregular maps. It is shown that analytic sets also characterize the sets of asymptotic values of quasiregular maps in Rn, even for those with finite order of growth. Our construction is based on Drasin's quasiregular sine function
Resumo:
We introduce a robot-safety device system attended by two different repairmen. The twin system is characterized by the natural feature of cold standby and by an admissible “risky” state. In order to analyse the random behaviour of the entire system (robot, safety device, repair facility) we employ a stochastic process endowed with probability measures satisfying general Hokstad-type differential equations. The solution procedure is based on the theory of sectionally holomorphic functions, characterized by a Cauchy-type integral defined as a Cauchy principal value in double sense. An application of the Sokhotski-Plemelj formulae determines the long-run availability of the robot-safety device. Finally, we consider the particular but important case of deterministic repair.
Resumo:
AMS Subject Classification 2010: 11M26, 33C45, 42A38.
Resumo:
In the recent past one of the main concern of research in the field of Hypercomplex Function Theory in Clifford Algebras was the development of a variety of new tools for a deeper understanding about its true elementary roots in the Function Theory of one Complex Variable. Therefore the study of the space of monogenic (Clifford holomorphic) functions by its stratification via homogeneous monogenic polynomials is a useful tool. In this paper we consider the structure of those polynomials of four real variables with binomial expansion. This allows a complete characterization of sequences of 4D generalized monogenic Appell polynomials by three different types of polynomials. A particularly important case is that of monogenic polynomials which are simply isomorphic to the integer powers of one complex variable and therefore also called pseudo-complex powers.
Resumo:
The initial motivation for this paper is to discuss a more concrete approach to an approximation theorem of Axler and Shields, which says that the uniform algebra on the closed unit disc (D) over bar generated by z and h, where h is a nowhere-holomorphic harmonic function on D that is continuous up to partial derivative D, equals C((D) over bar). The abstract tools used by Axler and Shields make harmonicity of h an essential condition for their result. We use the concepts of plurisubharmonicity and polynomial convexity to show that, in fact, the same conclusion is reached if h is replaced by h + R, where R is a non-harmonic perturbation whose Laplacian is ``small'' in a certain sense.
Resumo:
We present two extension theorems for holomorphic generalized functions. The first one is a version of the classic Hartogs extension theorem. In this, we start from a holomorphic generalized function on an open neighbourhood of the bounded open boundary, extending it, holomorphically, to a full open. In the second theorem a generalized version of a classic result is obtained, done independently, in 1943, by Bochner and Severi. For this theorem, we start from a function that is holomorphic generalized and has a holomorphic representative on the bounded domain boundary, we extend it holomorphically the function, for the whole domain.
Resumo:
The images of Hermite and Laguerre-Sobolev spaces under the Hermite and special Hermite semigroups (respectively) are characterized. These are used to characterize the image of Schwartz class of rapidly decreasing functions f on R-n and C-n under these semigroups. The image of the space of tempered distributions is also considered and a Paley-Wiener theorem for the windowed (short-time) Fourier transform is proved.
Resumo:
A new approach to evaluating all multiple complex roots of analytical function f(z) confined to the specified rectangular domain of complex plane has been developed and implemented in Fortran code. Generally f (z), despite being holomorphic function, does not have a closed analytical form thereby inhibiting explicit evaluation of its derivatives. The latter constraint poses a major challenge to implementation of the robust numerical algorithm. This work is at the instrumental level and provides an enabling tool for solving a broad class of eigenvalue problems and polynomial approximations.
Resumo:
We construct an Euler product from the Hecke eigenvalues of an automorphic form on a classical group and prove its analytic continuation to the whole complex plane when the group is a unitary group over a CM field and the eigenform is holomorphic. We also prove analytic continuation of an Eisenstein series on another unitary group, containing the group just mentioned defined with such an eigenform. As an application of our methods, we prove an explicit class number formula for a totally definite hermitian form over a CM field.
Resumo:
It is proved that if the increasing sequence {kn} n=0..∞ n=0 of nonnegative integers has density greater than 1/2 and D is an arbitrary simply connected subregion of C\R then the system of Hermite associated functions Gkn(z) n=0..∞ is complete in the space H(D) of complex functions holomorphic in D.
Resumo:
MSC 2010: 30C10, 32A30, 30G35
Resumo:
The tissue kallikreins are serine proteases encoded by highly conserved multigene families. The rodent kallikrein (KLK) families are particularly large, consisting of 13 26 genes clustered in one chromosomal locus. It has been recently recognised that the human KLK gene family is of a similar size (15 genes) with the identification of another 12 related genes (KLK4-KLK15) within and adjacent to the original human KLK locus (KLK1-3) on chromosome 19q13.4. The structural organisation and size of these new genes is similar to that of other KLK genes except for additional exons encoding 5 or 3 untranslated regions. Moreover, many of these genes have multiple mRNA transcripts, a trait not observed with rodent genes. Unlike all other kallikreins, the KLK4-KLK15 encoded proteases are less related (25–44%) and do not contain a conventional kallikrein loop. Clusters of genes exhibit high prostatic (KLK2-4, KLK15) or pancreatic (KLK6-13) expression, suggesting evolutionary conservation of elements conferring tissue specificity. These genes are also expressed, to varying degrees, in a wider range of tissues suggesting a functional involvement of these newer human kallikrein proteases in a diverse range of physiological processes.