85 resultados para Hemicelluloses


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ultrafiltration (UF) is already used in pulp and paper industry and its demand is growing because of the required reduction of raw water intake and the separation of useful compounds from process waters. In the pulp and paper industry membranes might be exposed to extreme conditions and, therefore, it is important that the membrane can withstand them. In this study, extractives, hemicelluloses and lignin type compounds were separated from wood hydrolysate in order to be able to utilise the hemicelluloses in the production of biofuel. The performance of different polymeric membranes at different temperatures was studied. Samples were analysed for total organic compounds (TOC), lignin compounds (UV absorption at 280 nm) and sugar. Turbidity, conductivity and pH were also measured. The degree of fouling of the membranes was monitored by measuring the pure water flux before and comparing it with the pure water flux after the filtration of hydrolysate. According to the results, the retention of turbidity was observed to be higher at lower temperature compared to when the filtrations were operated at high temperature (70 °C). Permeate flux increased with elevated process temperature. There was no detrimental effect of temperature on most of the membranes used. Microdyn-Nadir regenerated cellulose membranes (RC) and GE-Osmonics thin film membranes seemed to be applicable in the chosen process conditions. The Polyethersulphone (NF-PES-10 and UH004P) and polysulphone (MPS-36) membranes used were highly fouled, but they showed high retentions for different compounds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The world reserves of petroleum will finish in about 100 years. For a tropical country like Brazil, biomass will be the natural substitute for petroleum. For the best utilization of biomass, it first needs to be separated into its principal components: cellulose, hemicelluloses, lignins, vegetable and essential oils, non-structural carbohydrates, bark and foliage. All feedstocks for the chemical industry can be obtained from these biomass components, as shown in the first part of this paper. In the second part we discuss how the major products from petrochemicals can be obtained from the different biomass components. We show that Brazil can use different strategies, compared to other countries, to obtain petrochemical products, which could result in innovations. However, it is necessary that the government starts to invest immediately in order to keep the petrochemical industries competitive with foreign industries, so that they continue to be one of Brazil's major employers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The transformation of a traditional pulp mill into an integrated forest biorefinery utilizing wood-derived biomass presents a promising opportunity for enterprise revival of the pulp and paper industry by offering new sources of revenue and significantly improved industry profitability. One proposed next generation process step for an integrated forest biorefinery is the extraction of hemicelluloses, allowing the co-production of pulp and ethanol or chemicals. The extraction of hemicelluloses, however, will likely have downstream effects on pulp quality. In the literature survey an overview of the integrated forest biorefinery and possible next generation technologies implementable in such facility were reviewed. Moreover, some hemicellulose extraction methods suitable for the co-production of pulp and hemicellulose products were looked into in more detail. Also, an overview on the significance of pulp’s hemicellulose content on papermaking properties of pulp fibers was made. In the literature it is stated that the hemicellulose content of pulp affects on many papermaking properties of pulp fibers, hornification and paper strength properties in particular. In the experimental part the goal was to investigate what effects alkaline hemicellulose extraction after bleaching has on the papermaking properties of birch Kraft pulp. It was discovered that tested pulps, normal and hemi-poor birch Kraft pulp, were different in many ways regarding to pulp properties. Differences were observed in both physical and chemical characteristics. Furthermore, clear distinctions were seen in tested paper properties, especially in strength properties, between the handsheets made from hemi-poor or normal birch Kraft pulp. Hemi-poor and normal birch Kraft pulps were also compared as a raw material of laboratory made copy paper. Based on this comparison, usage of hemi-poor birch pulp as the raw material of copy paper does not drastically deteriorate its quality.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pulp hemicelluloses can be extracted with NaOH and quantified by colorimetric and gravimetric techniques. However the most usual methods to measure eucalyptus pulp hemicelluloses have been through the pentosan method or through xylan analyses by GC or HPLC techniques. In this study a comparison was made between the more traditional methods and indirect method of NaOH 5% extraction followed by colorimetric analyses. It was observed that the content of NaOH 5% extract correlates very well with pulp xylan content and reasonably well with the pentosan content. It is concluded that the 5% NaOH solubility method can be used in replacement of the other two, since it is faster, simpler and less costly to carry out than the others.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multivariate models were developed using Artificial Neural Network (ANN) and Least Square - Support Vector Machines (LS-SVM) for estimating lignin siringyl/guaiacyl ratio and the contents of cellulose, hemicelluloses and lignin in eucalyptus wood by pyrolysis associated to gaseous chromatography and mass spectrometry (Py-GC/MS). The results obtained by two calibration methods were in agreement with those of reference methods. However a comparison indicated that the LS-SVM model presented better predictive capacity for the cellulose and lignin contents, while the ANN model presented was more adequate for estimating the hemicelluloses content and lignin siringyl/guaiacyl ratio.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hemiselluloosat kuuluvat selluloosan ja ligniinin ohella puun ja muiden kasvimateriaalien päärakenneaineksiin. Hemiselluloosan kemiallisessa koostumuksessa on eroja kasvilajien välillä, mikä tekee ryhmästä hyvin monimuotoisen. Lehtipuiden pääasiallinen hemiselluloosa on glukuroniksylaani. Ksylaaneja esiintyy laajasti myös muissa kasveissa erilaisina rakenteina. Havupuiden yleisin hemiselluloosa on puolestaan galaktoglukomannaani. Arabinogalaktaani on erityisesti lehtikuusesta runsaana löytyvä hemiselluloosa, jota muissa puulajeissa on vain vähän. Luonnon polymeerejä tutkitaan jatkuvasti muun muassa vaihtoehtojen löytämiseksi raakaöljypohjaisille tuotteille. Aiemmin hemiselluloosia on pääosin hyödynnetty sellaisenaan tai jalostettu esimerkiksi sokereiksi. Selluloosan ja tärkkelyksen tavoin ne voivat kuitenkin toimia myös kemiallisen, fysikaalisen tai entsymaattisen muokkauksen lähtöaineena. Hemiselluloosien käyttöä rajoittaa usein se, että niiden eristäminen kasvimateriaalista hyvällä saannolla on vaikeaa. Useimmiten hemiselluloosa erotetaan biomassasta ligniinin poiston jälkeen uuttamalla erilaisilla reagensseilla, kuten emäksillä. Arabinogalaktaanin erottamiseen ei kuitenkaan vaadita ankaria olosuhteita, vaan yleisimmin siihen riittää uutto vedellä. Kalvosuodatus puolestaan on hyvä keino hemiselluloosan talteenottoon uuttoliuoksista. Tässä työssä tarkasteltiin arabinogalaktaanin erotusta siperianlehtikuusesta uuttokokein. Saadut uuttoliuokset konsentrointiin ja puhdistettiin kalvosuodatusmenetelmillä. Lisäksi tutkittiin eristetyn arabinogalaktaanin käyttöä kemiallisen muokkauksen lähtöaineena, missä pyrkimyksenä oli etenkin in situ -modifiointi suoraan uuttoliuoksessa oleville yhdisteille. Uuttokokeilla saatiin kuitenkin vain pieni osa lehtikuusen arabinogalaktaanista erotetuksi. Myös kalvosuodatusvaiheen aikana menetettiin osa uuttoliuosten arabinogalaktaanista. Koska arabinogalaktaanipitoisuus uuttoliuoksissa jäi hyvin alhaiseksi, in situ -modifiointeja oli vaikea saada onnistumaan. Uutto-olosuhteiden lisätutkimuksella sekä kiinnittämällä erityistä huomiota suodatuskalvojen valintaan voitaneen pitoisuutta nostaa ja saada lisämateriaalia kemiallista muokkausta varten.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interest in recovery of valuable components from process streams has increased in recent years. Purpose of biorefinery is to utilize components that otherwise would go to waste. Hemicelluloses, for example, could be utilized in production of many valuable products. One possible way to separate and fractionate hemicelluloses is membrane filtration. In the literature part of this work membrane fouling in filtration processes of pulp and paper process- and wastewaters was investigated. Especially purpose was to find out the possible fouling compounds, after which facilities to remove or modify such components less harmful were studied. In the experimental part different pretreatment methods, mainly to remove or degrade lignin from wood hydrolysate, were studied. In addition, concentration of hemicelluloses and separation from lignin were examined with two ultrafiltration membranes; UFX5 and RC70PP. Changes in feed solution, filtration capacity and fouling of membranes were used to evaluate the effects of pretreatment methods. Changes in hydrolysate composition were observed with different analysis methods. Filtration of hydrolysate proved to be challenging, especially with the UFX5 membrane. The more hydrophilic RC70PP membrane did not seem to be fouled as severely as the UFX5 membrane, according to pure water flux measurements. The UFX5 membrane retained hemicelluloses rather well, but problems arose from rapid flux decline resulting from concentration polarization and fouling of membrane. Most effective pretreatment methods in the case with the UFX5 membrane proved to be prefiltration with the RC70PP membrane, activated carbon adsorption and photocatalytic oxidation using titanium dioxide and UV radiation. An additional experiment with PHW extract showed that pulsed corona discharge treatment degraded lignin quite efficiently and thus improved filtration capacity remarkably, even over six times compared to the filtration with untreated extract.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tässä diplomityössä tutkittiin kalvosuodatuksen ja adsorption yhdistämistä biojalostamon erotusprosesseissa. Työn kirjallisuusosassa käsitellään hemiselluloosien erottamista puusta, kalvosuodatusta hemiselluloosien käsittelyssä sekä hemiselluloosien pilkkomista sokereiksi ja sokereiden kromatografista erotusta. Kokeellisessa osassa tutkittiin hemiselluloosahydrolysaatin fraktioimista kalvosuodatuksella ja adsorbenttikäsittelyn vaikutusta hydrolysaatin suodatettavuuteen. Kokeellisessa osassa tutkittiin myös fraktioinnin vaikutusta hartsien likaantumiseen happohydrolyysin jälkeisessä kromatografisessa erotuksessa. Työssä kokeiltiin useita erilaisia kalvoja, mutta suurin osa suodatuksista tehtiin regeneroidusta selluloosasta valmistetulla kalvolla UC030 ja polyeetterisulfoni kalvolla UFX5. Esikäsittelyyn käytettiin XAD16 adsorbenttia ja hartsien likaantumista tutkittiin CS12GC Na+ hartsilla. Suodatuskokeet tehtiin sekä laboratoriomittakaavan Amicon-suodattimella että pilot-mittakaavan CR- suodattimella. Työn tulokset osoittivat, että konsentroituneen hemiselluloosafraktion tuottaminen tehokkaasti ei onnistu kalvosuodatuksella ilman esikäsittelyä. Kalvon likaantumisen vuoksi permeaattivuo laski hyvin nopeasti niin alhaiseksi, ettei suodatuksen jatkaminen olisi taloudellisesti kannattavaa. Hydrolysaatin esikäsittely XAD16 adsorbentillä poisti tehokkaasti kalvoja likaavia uuteaineita ja ligniiniä. Adsorbenttikäsittelyn jälkeen hydrolysaatin suodattaminen onnistui ilman permeaattivuon huomattavaa alenemista toisessa suodatusvaiheessa ja saatiin aikaiseksi hyvin konsentroitunut hemiselluloosafraktio.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The search for new renewable materials has intensified in recent years. Pulp and paper mill process streams contain a number of potential compounds which could be used in biofuel production and as raw materials in the chemical, food and pharmaceutical industries. Prior to utilization, these compounds require separation from other compounds present in the process stream. One feasible separation technique is membrane filtration but to some extent, fouling still limits its implementation in pulp and paper mill applications. To mitigate fouling and its effects, foulants and their fouling mechanisms need to be well understood. This thesis evaluates fouling in filtration of pulp and paper mill process streams by means of polysaccharide model substance filtrations and by development of a procedure to analyze and identify potential foulants, i.e. wood extractives and carbohydrates, from fouled membranes. The model solution filtration results demonstrate that each polysaccharide has its own fouling mechanism, which also depends on the membrane characteristics. Polysaccharides may foul the membranes by adsorption and/or by gel/cake layer formation on the membrane surface. Moreover, the polysaccharides interact, which makes fouling evaluation of certain compound groups very challenging. Novel methods to identify wood extractive and polysaccharide foulants are developed in this thesis. The results show that it is possible to extract and identify wood extractives from membranes fouled in filtration of pulp and paper millstreams. The most effective solvent was found to be acetone:water (9:1 v/v) because it extracted both lipophilic extractives and lignans at high amounts from the fouled membranes and it was also non-destructive for the membrane materials. One hour of extraction was enough to extract wood extractives at high amounts for membrane samples with an area of 0.008 m2. If only qualitative knowledge of wood extractives is needed a simplified extraction procedure can be used. Adsorption was the main fouling mechanism in extractives-induced fouling and dissolved fatty and resin acids were mostly the reason for the fouling; colloidal fouling was negligible. Both process water and membrane characteristics affected extractives-induced fouling. In general, the more hydrophilic regenerated cellulose (RC) membrane fouled less that the more hydrophobic polyethersulfone (PES) and polyamide (PA) membranes independent of the process water used. Monosaccharide and uronic acid units could also be identified from the fouled synthetic polymeric membranes. It was impossible to analyze all monosaccharide units from the RC membrane because the analysis result obtained contained degraded membrane material. One of the fouling mechanisms of carbohydrates was adsorption. Carbohydrates were not potential adsorptive foulants to the sameextent as wood extractives because their amount in the fouled membranes was found to be significantly lower than the amount of wood extractives.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diplomityön tarkoituksena oli puhdistaa kraft ligniiniä. Raaka-aineena käytettiin pääasiassa Lignoboost -menetelmän kaltaisella menetelmällä havupuu- mustalipeästä saostettua ligniiniä. Diplomityön ensimmäisenä tavoitteena oli löytää menetelmä, jolla voidaan poistaa kraft ligniinistä tuhkaa. Työssä raaka-aineena käytetyn saostetun ligniinin tuhkapitoisuus oli noin 3 %. Tarkoituksena oli saada laskettua tuhkapitoisuutta uudelleenlieton, suodatuksen ja pesun avulla. Työn toisena tavoitteena oli hiilihydraattien poisto kraft ligniinistä. Hiilihydraatit, pääosin hemiselluloosaa, ovat kiinnittyneet ligniiniin vahvoin kovalenttisin sidoksin. Aiempien kokemusten perusteella hemiselluloosat eivät irtoa ligniinistä vesipesun yhteydessä, vaan niiden irrottaminen vaatii onnistuakseen happo-, entsyymi- tai mikrobikäsittelyn, mikäli halutaan säilyttää ligniinin rakenne muuttumattomana. Tässä työssä käytetyt kraft ligniinin puhdistusmenetelmät olivat lietto, happohydrolyysi ja entsymaattinen hydrolyysi, joista kumpikin sisälsi ligniinin uudelleenlieton, suodatuksen ja muodostuneen kakun pesun vedellä.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tämän työn tavoitteena oli kehittää esikäsittelymenetelmä, jolla voidaan reaaliaikaisesti vähentää hydrolysaatin ligniinipitoisuutta ja näin vähentää fluoresenssia hemiselluloosan analysoimisessa. Työn kirjallisuusosassa käsitellään hemiselluloosien rakennetta sekä niiden erottamista puusta, sekä käydään läpi hemiselluloosien käyttömahdollisuuksia ja niiden reaaliaikaiseen analysointiin soveltuvia tekniikoita. Kokeellisessa osassa tutkittiin ultrasuodatusta sekä adsorptiohartsikäsittelyä hydrolysaatin esikäsittelynä ennen Raman-analyysiä. Esikäsittelyn tavoitteena oli vähentää Raman-analyysia häiritsevää ligniinistä johtuvaa fluoresenssia. Suodatukset tehtiin Amicon-suodatuslaitteistolla käyttäen viittä eri suodatuskalvoa. Hartsikäsittelyissä käytettiin Amberliten XAD16 ja XAD7HP adsorbtiohartseja. Hartsisuhteina käytettiin 1/80, 1/40, 1/19 ja 1/13. Käytetyt ultrauodatuskalvot osoittautuivat suodatusnäytteistä tehtyjen HPLC-analyysien perusteella cut-off-luvultaan liian pieniksi, sillä hemiselluloosien ja ligniinin erotus ei onnistunut, vaan molemmat väkevöityivät konsentraattiin. Hartsikäsittelyillä saatiin ligniiniä poistettua aiheuttamatta hemiselluloosahäviöitä. Parhaimmillaan ligniinin poistumista kuvaava UV-absorbanssi pieneni hartsilla XAD16 37 % ja hartsilla XAD7 25 %. Vaikka ligniinipitoisuus aleni, näytteet fluoresoivat edelleen voimakkaasti Raman-mittauksessa. Tulosten perusteella näyttäisi siltä, että hartsikäsittelyä optimoimalla analyysiä häiritsevää fluoresenssia olisi edelleen mahdollista vähentää.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Knowledge of the behaviour of cellulose, hemicelluloses, and lignin during wood and pulp processing is essential for understanding and controlling the processes. Determination of monosaccharide composition gives information about the structural polysaccharide composition of wood material and helps when determining the quality of fibrous products. In addition, monitoring of the acidic degradation products gives information of the extent of degradation of lignin and polysaccharides. This work describes two capillary electrophoretic methods developed for the analysis of monosaccharides and for the determination of aliphatic carboxylic acids from alkaline oxidation solutions of lignin and wood. Capillary electrophoresis (CE), in its many variants is an alternative separation technique to chromatographic methods. In capillary zone electrophoresis (CZE) the fused silica capillary is filled with an electrolyte solution. An applied voltage generates a field across the capillary. The movement of the ions under electric field is based on the charge and hydrodynamic radius of ions. Carbohydrates contain hydroxyl groups that are ionised only in strongly alkaline conditions. After ionisation, the structures are suitable for electrophoretic analysis and identification through either indirect UV detection or electrochemical detection. The current work presents a new capillary zone electrophoretic method, relying on in-capillary reaction and direct UV detection at the wavelength of 270 nm. The method has been used for the simultaneous separation of neutral carbohydrates, including mono- and disaccharides and sugar alcohols. The in-capillary reaction produces negatively charged and UV-absorbing compounds. The optimised method was applied to real samples. The methodology is fast since no other sample preparation, except dilution, is required. A new method for aliphatic carboxylic acids in highly alkaline process liquids was developed. The goal was to develop a method for the simultaneous analysis of the dicarboxylic acids, hydroxy acids and volatile acids that are oxidation and degradation products of lignin and wood polysaccharides. The CZE method was applied to three process cases. First, the fate of lignin under alkaline oxidation conditions was monitored by determining the level of carboxylic acids from process solutions. In the second application, the degradation of spruce wood using alkaline and catalysed alkaline oxidation were compared by determining carboxylic acids from the process solutions. In addition, the effectiveness of membrane filtration and preparative liquid chromatography in the enrichment of hydroxy acids from black liquor was evaluated, by analysing the effluents with capillary electrophoresis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The major type of non-cellulosic polysaccharides (hemicelluloses) in softwoods, the partly acetylated galactoglucomannans (GGMs), which comprise about 15% of spruce wood, have attracted growing interest because of their potential to become high-value products with applications in many areas. The main objective of this work was to explore the possibilities to extract galactoglucomannans in native, polymeric form in high yield from spruce wood with pressurised hot-water, and to obtain a deeper understanding of the process chemistry involved. Spruce (Picea abies) chips and ground wood particles were extracted using an accelerated solvent extractor (ASE) in the temperature range 160 – 180°C. Detailed chemical analyses were done on both the water extracts and the wood residues. As much as 80 – 90% of the GGMs in spruce wood, i.e. about 13% based on the original wood, could be extracted from ground spruce wood with pure water at 170 – 180°C with an extraction time of 60 min. GGMs comprised about 75% of the extracted carbohydrates and about 60% of the total dissolved solids. Other substances in the water extracts were xylans, arabinogalactans, pectins, lignin and acetic acid. The yields from chips were only about 60% of that from ground wood. Both the GGMs and other non-cellulosic polysaccharides were extensively hydrolysed at severe extraction conditions when pH dropped to the level of 3.5. Addition of sodium bicarbonate increased the yields of polymeric GGMs at low additions, 2.5 – 5 mM, where the end pH remained around 3.9. However, at higher addition levels the yields decreased, mainly because the acetyl groups in GGMs were split off, leading to a low solubility of GGMs. Extraction with buffered water in the pH range 3.8 – 4.4 gave similar yields as with plain water, but gave a higher yield of polymeric GGMs. Moreover, at these pH levels the hydrolysis of acetyl groups in GGMs was significantly inhibited. It was concluded that hot-water extraction of polymeric GGMs in good yields (up to 8% of wood) demands appropriate control of pH, in a narrow range about 4. These results were supported by a study of hydrolysis of GGM at constant pH in the range of 3.8 – 4.2 where a kinetic model for degradation of GGM was developed. The influence of wood particle size on hot-water extraction was studied with particles in the range of 0.1 – 2 mm. The smallest particles (< 0.1 mm) gave 20 – 40% higher total yield than the coarsest particles (1.25 – 2 mm). The difference was greatest at short extraction times. The results indicated that extraction of GGMs and other polysaccharides is limited mainly by the mass transfer in the fibre wall, and for coarse wood particles also in the wood matrix. Spruce sapwood, heartwood and thermomechnical pulp were also compared, but only small differences in yields and composition of extracts were found. Two methods for isolation and purification of polymeric GGMs, i.e. membrane filtration and precipitation in ethanol-water, were compared. Filtration through a series of membranes with different pore sizes separated GGMs of different molar masses, from polymers to oligomers. Polysaccharides with molar mass higher than 4 kDa were precipitated in ethanol-water. GGMs comprised about 80% of the precipitated polysaccharides. Other polysaccharides were mainly arabinoglucuronoxylans and pectins. The ethanol-precipitated GGMs were by 13C NMR spectroscopy verified to be very similar to GGMs extracted from spruce wood in low yield at a much lower temperature, 90°C. The obtained large body of experimental data could be utilised for further kinetic and economic calculations to optimise technical hot-water extractionof softwoods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biorefining is defined as sustainable conversion of biomass into marketable products and energy. Forests cover almost one third of earth’s land area, and account for approximately 40% of the total annual biomass production. In forest biorefining, the wood components are, in addition to the traditional paper and board products, converted into chemicals and biofuels. The major components in wood are cellulose, hemicelluloses, and lignin. The main hemicellulose in softwoods, which are of interest especially for the Nordic forest industry, is O-acetyl galactoglucomannan (GGM). GGM can be isolated in industrial scale from the waste waters of the mechanical pulping process, but is not yet today industrially utilized. In order to attain desired properties of GGM for specific end-uses, chemical and enzymatic modifications can be performed. Regioselective modifications of GGM, and other galactose-containing polysaccharides were done by oxidations, and by combining oxidations with subsequent derivatizations of the formed carbonyl or carboxyl groups. Two different pathways were investigated: activation of the C-6 positions in different sugar units by TEMPO-mediated oxidation, and activation of C-6 position in only galactose-units by oxidation catalyzed by the enzyme galactose oxidase. The activated sites were further selectively derivatized; TEMPO-oxidized GGM by a carbodiimide-mediated reaction forming amides, and GO-oxidized GGM by indium-mediated allylation introducing double or triple bonds to the molecule. In order to better understand the reaction, and to develop a MALDI-TOF-MS method for characterization of regioselectively allylated GGM, α-D-galactopyranoside and raffinose were used as model compounds. All reactions were done in aqueous media. To investigate the applicability of the modified polysaccharides for, e.g., cellulose surface functionalization, their sorption onto pulp fibres was studied. Carboxylation affects the sorption tendency significantly; a higher degree of oxidation leads to lower sorption. By controlling the degree of oxidation of the polysaccharides and the ionic strength of the sorption media, high degrees of sorption of carboxylated polysaccharides onto cellulose could, however, be obtained. Anionic polysaccharides were used as templates during laccase-catalyzed polymerization of aniline, offering a green, chemo-enzymatic route for synthesis of conducting polyaniline (PANI) composite materials. Different polysaccharide templates, such as, native GGM, TEMPO-oxidized GGM, naturally anionic κ-carrageenan, and nanofibrillated cellulose produced by TEMPO-oxidation, were assessed. The conductivity of the synthesized polysaccharide/PANI biocomposites varies depending on the polysaccharide template; κ-CGN, the anionic polysaccharide with the lowest pKa value, produces the polysaccharide/PANI biocomposites with the highest conductivity. The presented derivatization, sorption, and polymerization procedures open new application windows for polysaccharides, such as spruce GGM. The modified polysaccharides and the conducting biocomposites produced provide potential applications in biosensors, electronic devices, and tissue engineering.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lignocellulosic biomasses (e.g., wood and straws) are a potential renewable source for the production of a wide variety of chemicals that could be used to replace those currently produced by petrochemical industry. This would lead to lower greenhouse gas emissions and waste amounts, and to economical savings. There are many possible pathways available for the manufacturing of chemicals from lignocellulosic biomasses. One option is to hydrolyze the cellulose and hemicelluloses of these biomasses into monosaccharides using concentrated sulfuric acid as catalyst. This process is an efficient method for producing monosaccharides which are valuable platforn chemicals. Also other valuable products are formed in the hydrolysis. Unfortunately, the concentrated acid hydrolysis has been deemed unfeasible mainly due to high chemical consumption resulting from the need to remove sulfuric acid from the obtained hydrolysates prior to the downstream processing of the monosaccharides. Traditionally, this has been done by neutralization with lime. This, however, results in high chemical consumption. In addition, the by-products formed in the hydrolysis are not removed and may, thus, hinder the monosaccharide processing. In order to improve the feasibility of the concentrated acid hydrolysis, the chemical consumption should be decreased by recycling of sulfuric acid without neutralization. Furthermore, the monosaccharides and the other products formed in the hydrolysis should be recovered selectively for efficient downstream processing. The selective recovery of the hydrolysis by-products would have additional economical benefits on the process due to their high value. In this work, the use of chromatographic fractionation for the recycling of sulfuric acid and the selective recovery of the main components from the hydrolysates formed in the concentrated acid hydrolysis was investigated. Chromatographic fractionation based on the electrolyte exclusion with gel type strong acid cation exchange resins in acid (H+) form as a stationary phase was studied. A systematic experimental and model-based study regarding the separation task at hand was conducted. The phenomena affecting the separation were determined and their effects elucidated. Mathematical models that take accurately into account these phenomena were derived and used in the simulation of the fractionation process. The main components of the concentrated acid hydrolysates (sulfuric acid, monosaccharides, and acetic acid) were included into this model. Performance of the fractionation process was investigated experimentally and by simulations. Use of different process options was also studied. Sulfuric acid was found to have a significant co-operative effect on the sorption of the other components. This brings about interesting and beneficial effects in the column operations. It is especially beneficial for the separation of sulfuric acid and the monosaccharides. Two different approaches for the modelling of the sorption equilibria were investigated in this work: a simple empirical approach and a thermodynamically consistent approach (the Adsorbed Solution theory). Accurate modelling of the phenomena observed in this work was found to be possible using the simple empirical models. The use of the Adsorbed Solution theory is complicated by the nature of the theory and the complexity of the studied system. In addition to the sorption models, a dynamic column model that takes into account the volume changes of the gel type resins as changing resin bed porosity was also derived. Using the chromatography, all the main components of the hydrolysates can be recovered selectively, and the sulfuric acid consumption of the hydrolysis process can be lowered considerably. Investigation of the performance of the chromatographic fractionation showed that the highest separation efficiency in this separation task is obtained with a gel type resin with a high crosslinking degree (8 wt. %); especially when the hydrolysates contain high amounts of acetic acid. In addition, the concentrated acid hydrolysis should be done with as low sulfuric acid concentration as possible to obtain good separation performance. The column loading and flow rate also have large effects on the performance. In this work, it was demonstrated that when recycling of the fractions obtained in the chromatographic fractionation are recycled to preceding unit operations these unit operations should included in the performance evaluation of the fractionation. When this was done, the separation performance and the feasibility of the concentrated acid hydrolysis process were found to improve considerably. Use of multi-column chromatographic fractionation processes, the Japan Organo process and the Multi-Column Recycling Chromatography process, was also investigated. In the studied case, neither of these processes could compete with the single-column batch process in the productivity. However, due to internal recycling steps, the Multi-Column Recycling Chromatography was found to be superior to the batch process when the product yield and the eluent consumption were taken into account.