822 resultados para GREEN PROPOLIS
Resumo:
This study aimed to evaluate the efficiency of natural biocides, brown and green propolis, for the control of bacterial contamination in the production of sugarcane spirit. The treatments consisted of brown and green propolis extracts, ampicillin, and a control and were assessed at the beginning and end of harvest season in ten fermentation cycles. In the microbiological analyses, the lactic acid bacteria were quantified in the inoculum before and after the treatment with biocides, and the viability of yeast cells during fermentation was evaluated. The levels of acids, glycerol, total residual reducing sugars, and ethanol were analyzed for the wine resulting from each fermentation cycle. A reduction in the number of bacterial contaminants in the inoculum in the treatments with the natural biocides was observed, but it did not affect the viability of yeast cells. The control of the contaminants led to the production of higher levels of ethanol and reduced acidity in the wine produced. The results of the use of brown and green propolis to control the growth microorganisms in the fermentation of sugarcane spirit can be of great importance for using alternative strategies to synthetic antibacterials in fermentation processes including other distilled beverage or spirits.
Resumo:
Propolis possesses various biological activities such as antibacterial, antifungal, anti-inflammatory, anesthetic and antioxidant properties. A topically applied product based on Brazilian green propolis was developed for the treatment of burns. For such substance to be used more safely in future clinical applications, the present study evaluated the mutagenic potential of topical formulations supplemented with green propolis extract (1.2, 2.4 and 3.6%) based on the analysis of chromosomal aberrations and of micronuclei. In the in vitro studies, 3-h pulse (G(1) phase of the cell cycle) and continuous (20 h) treatments were performed. In the in vivo assessment, the animals were injured on the back and then submitted to acute (24 h), subacute (7 days) and subchronic (30 days) treatments consisting of daily dermal applications of gels containing different concentrations of propolis. Similar frequencies of chromosomal aberrations were observed for cultures submitted to 3-h pulse and continuous treatment with gels containing different propolis concentrations and cultures not submitted to any treatment. However, in the continuous treatment cultures treated with the 3.6% propolis gel presented significantly lower mitotic indices than the negative control. No statistically significant differences in the frequencies of micronuclei were observed between animals treated with gels containing different concentrations of propolis and the negative control for the three treatment times. Under the present conditions, topical formulations containing different concentrations of green propolis used for the treatment of burns showed no mutagenic effect in either test system, but 3.6% propolis gel was found to be cytotoxic in the in vitro test.
Resumo:
We examined the antibacterial activities of several types of propolis, including Africanized honey bee green propolis and propolis produced by meliponini bees. The antibacterial activity of green propolis against Micrococcus luteus and Staphylococcus aureus was superior to that of Melipona quadrifasciata and Scaptotrigona sp propolis. Only two samples of propolis (green propolis and Scaptotrigona sp propolis) were efficient against Escherichia coli. Melipona quadrifasciata propolis was better than green propolis and Scaptotrigona sp propolis against Pseudomonas aeruginosa. We concluded that these resins have potential for human and veterinary medicine.
Resumo:
Total phenolic contents, antioxidant activity and chemical composition of propolis samples from three localities of Minas Gerais state (southeast Brazil) were determined. Total phenolic contents were determined by the Folin-Ciocalteau method, antioxidant activity was evaluated by DPPH, using BHT as reference, and chemical composition was analyzed by GC/MS. Propolis from Itapecerica and Paula Candido municipalities were found to have high phenolic contents and pronounced antioxidant activity. From these extracts, 40 substances were identified, among them were simple phenylpropanoids, prenylated phenylpropanoids, sesqui- and diterpenoids. Quantitatively, the main constituent of both samples was allyl-3-prenylcinnamic acid. A sample from Virginopolis municipality had no detectable phenolic substances and contained mainly triterpenoids, the main constituents being alpha-and beta-amyrins. Methanolic extracts from Itapecerica and Paula Candido exhibited pronounced scavenging activity towards DPPH, indistinguishable from BHT activity. However, extracts from Virginopolis sample exhibited no antioxidant activity. Total phenolic substances, GC/MS analyses and antioxidant activity of samples from Itapecerica collected monthly over a period of 1 year revealed considerable variation. No correlation was observed between antioxidant activity and either total phenolic contents or contents of artepillin C and other phenolic substances, as assayed by CG/MS analysis.
Resumo:
Brazilian propolis contains several phenolic compounds among which 5 diprenyl-4-hydroxycinnamic acid (artepillin-C) is commonly found in areas where flora is rich in Baccharis species. The quantification of artepillin-C has become an important factor as an indicator of Brazilian propolis quality and the compound may be used as a chemical marker for quality control in exportating green propolis. This work was to validate the method and evaluate the content of artepillin-C from 33 samples collected in different Brazilian regions. The method used was HPLC with UV-vis detection and a reversed-phase C-18 Column. The validation parameters studied were: linearity, accuracy, precision, quantification and detection limits. The results obtained were: detection limit = 0.0036 mu g/mL, quantification limit = 0.012 mu g/mL, accuracy = 0.0064 and 0.078, recovery 98-102%. Artepillin-C content varied from 0 to 11% depending on the geographical origin. Propolis from the southeast region presented the highest level of artepillin-C (5.0-11.0%). Whist that from the northeast region did not show any artepillin-C. Copyright (C) 2008 John Wiley & Sons, Ltd.
Brazilian Propolis: Seasonal Variation of the Prenylated p-Coumaric Acids and Antimicrobial Activity
Resumo:
Brazilian green propolis, which is used in food and beverages to improve health and to prevent diseases, demostrates antioxidant, antimutagenic, and antimicrobial activities. Most biological activities are thought to be related to the high levels of drupanin, artepillin C, and baccharin, which are compounds also present in Baccharis dracunculifolia D.C. (Asteraceae). Since propolis chemical composition depends on the region and the period of collection, as well as its plant origin, the effect of seasonal variation on the both content of prenylated p-coumaric acids and in vitro antimicrobial activity of Brazilian propolis from four different sites, was performed. The results showed that MIC values ranged from 100 to 300 mu g/mL against both Staphylococcus aureus and Kocuria rhizophila, while none of the propolis samples was active against Pseudomonas aeruginosa, Escherichia coli, and Candida albicans. HPLC analysis showed that the content of drupanin, artepillin C, and baccharin varied throughout the year, as well as among the different study sites. Also, it is suggested that Baccharis dracunculifolia is the main botanical source of Brazilian propolis in sites I and 2, while in sites 3 and 4, other plant species are also used by bees to produce propolis. All the evaluated propolis samples exhibited similar antibacterial activity, but different contents of prenylated p-coumaric acids throughout the year.
Resumo:
Six samples of Brazilian propolis from Minas Gerais and Paraná states were analyzed to identify the constituents (GC/MS and HPLC/MS) and to determine their contents (HPLC and external standardization). All samples contained characteristic constituents of green propolis, but the samples from Minas Gerais had higher contents of prenylated phenylpropanoids and caffeoylquinic acids. Kaempferide and two other flavonoids were among the major constituents of the samples from Minas Gerais. Luteolin 5-O-methyl ether was detected only in samples from Paraná. Baccharis dracunculifolia was a source of resins for all samples analyzed, but the samples from Paraná had more complex plant origin.
Resumo:
Propolis, a natural product of plant resins, is used by the bees to seal holes in their honeycombs and protect the hive entrance. However, propolis has also been used in folk medicine for centuries. Here, we apply the power of Saccharomyces cerevisiae as a model organism for studies of genetics, cell biology, and genomics to determine how propolis affects fungi at the cellular level. Propolis is able to induce an apoptosis cell death response. However, increased exposure to propolis provides a corresponding increase in the necrosis response. We showed that cytochrome c but not endonuclease G (Nuc1p) is involved in propolis-mediated cell death in S. cerevisiae. We also observed that the metacaspase YCA1 gene is important for propolis-mediated cell death. To elucidate the gene functions that may be required for propolis sensitivity in eukaryotes, the full collection of about 4,800 haploid S. cerevisiae deletion strains was screened for propolis sensitivity. We were able to identify 138 deletion strains that have different degrees of propolis sensitivity compared to the corresponding wild-type strains. Systems biology revealed enrichment for genes involved in the mitochondrial electron transport chain, vacuolar acidification, negative regulation of transcription from RNA polymerase II promoter, regulation of macroautophagy associated with protein targeting to vacuoles, and cellular response to starvation. Validation studies indicated that propolis sensitivity is dependent on the mitochondrial function and that vacuolar acidification and autophagy are important for yeast cell death caused by propolis.
Resumo:
This study assessed the behavior and the productive performance of lambs finished in feedlot receiving diets added with green propolis, brown propolis or monensin sodium. The experiment used a randomized block design that compared weight gain of 32 male lambs aged four months among four dietary treatments: (1) control, non-enriched diet; (2) with green propolis; (3) with brown propolis; and (4) with monensin sodium. The basic diet provided to all the groups was a total mixed ration (TMR) with a forage:concentrate ratio of 50:50, in which Tifton 85 (Cynodon spp.) grass was used as roughage feed and the concentrate was based on soybean meal, corn meal and minerals. The green propolis diet decreased rumination and increased resting time. The diets provided similar feeding rate (g/min). DM and aNDF intake (g/kg of body weight and g/kg of metabolic weight) were higher in the control treatment. Although the control group had the highest weight gain, the highest feed conversion and feed efficiency were found in lambs fed brown propolis and monensin sodium. Technically, brown propolis can substitute monensin sodium as a dietary additive for feedlot lambs. However, complementary studies are needed to identify the best levels of brown propolis to add to these diets. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Propolis is a polyphenol-rich resinous substance extensively used to improve health and prevent diseases. The effects of polyphenols from different sources of propolis on atherosclerotic lesions and inflammatory and angiogenic factors were investigated in LDL receptor gene (LDLr-/-) knockout mice. The animals received a cholesterol-enriched diet to induce the initial atherosclerotic lesions (IALs) or advanced atherosclerotic lesions (AALs). The IAL or AAL animals were divided into three groups, each receiving polyphenols from either the green, red or brown propolis (250 mg/kg per day) by gavage. After 4 weeks of polyphenol treatment, the animals were sacrificed and their blood was collected for lipid profile analysis. The atheromatous lesions at the aortic root were also analyzed for gene expression of inflammatory and angiogenic factors by quantitative real-time polymerase chain reaction and immunohistochemistry. All three polyphenol extracts improved the lipid profile and decreased the atherosclerotic lesion area in IAL animals. However, only polyphenols from the red propolis induced favorable changes in the lipid profiles and reduced the lesion areas in AAL mice. In IAL groups. VCAM, MCP-1, FGF, PDGF, VEGF, PECAM and MMP-9 gene expression was down-regulated, while the metalloproteinase inhibitor TIMP-1 gene was up-regulated by all polyphenol extracts. In contrast, for advanced lesions, only the polyphenols from red propolis induced the down-regulation of CD36 and the up-regulation of HO-1 and TIMP-1 when compared to polyphenols from the other two types of propolis. In conclusion, polyphenols from propolis, particularly red propolis, are able to reduce atherosclerotic lesions through mechanisms including the modulation of inflammatory and angiogenic factors. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
The aim of this study was to investigate the action of inhibiting S. aureus biofilm formation, and the ability to eliminate formed biofilm, by alcoholic extracts of green, red and brown propolis from Brazil. Ten isolates of S. aureus have been tested, 8 field isolates, 1 MRSA and 1 ATCC 25923, by microplate quantitative method. For the evaluation of inhibitory action, the isolates were inoculated, in triplicate, in TSB 1% glucose in the presence of green (1), red (2) and brown (4) propolis extracts. Biofilm formation was evaluated by optical reading, compared to a negative control consisting of a mixture of TSB and extract. For biofilm elimination assay, extracts were added to plates with 24h cultures of the same isolates. Assays were repeated three times on three different days. Eight out of the 10 isolates produced less biofilm in the presence of the green propolis extracts, so the inhibitory effect is 80%. Brown propolis extracts inhibited the formation of biofilm in 10% to 70% of the isolates and the red extracts in 30% to 80%. Regarding the biofilm elimination activity, green propolis extract was positive for 9 out of the 10 isolates (90%), the brown propolis extracts were positive for 0% to 100% isolates and red extracts for 0% to 10% isolates.
Resumo:
Baccharis dracunculifolia DC (Asteraceae) is a Brazilian medicinal plant popularly used for its antiulcer and anti-inflammatory properties. This plant is the main botanical source of Brazilian green propolis, a natural product incorporated into food and beverages to improve health. The present study aimed to investigate the chemical profile and intestinal anti-inflammatory activity of B. dracunculifolia extract on experimental ulcerative colitis induced by trinitrobenzenosulfonic acid (TNBS). Colonic damage was evaluated macroscopically and biochemically through its evaluation of glutathione content and its myeloperoxidase (MPO) and alkaline phosphatase activities. Additional in vitro experiments were performed in order to test the antioxidant activity by inhibition of induced lipid peroxidation in the rat brain membrane. Phytochemical analysis was performed by HPLC using authentic standards. The administration of plant extract (5 and 50 mgkg(-1)) significantly attenuated the colonic damage induced by TNBS as evidenced both macroscopically and biochemically. This beneficial effect can be associated with an improvement in the colonic oxidative status, since plant extract prevented glutathione depletion, inhibited lipid peroxidation and reduced MPO activity. Caffeic acid, p-coumaric acid, aromadendrin-4-O-methyl ether, 3-prenyl-p-coumaric acid, 3,5-diprenyl-p-coumaric acid and baccharin were detected in the plant extract.
Resumo:
Baccharis dracunculifolia is the source of Brazilian green propolis (BGP). Considering the broad spectrum of biological activities attributed to green proplis, B. dracunculifolia has a great potential for the development of new cosmetic and pharmaceutical products. In this work, the cultivation of 10 different populations of native B. dracunculifolia had been undertaken aiming to determine the role of seasonality on its phenolic compounds. For this purpose, fruits of this plant were collected from populations of 10 different regions, and 100 individuals of each population were cultivated in an experimental area of 1800 m(2). With respect to cultivation, the yields of dry plant, essential oil and crude extract were measured monthly resulting in mean values of 399 +/- 80 g, 0.6 +/- 0.1% and 20 +/- 4%, respectively. The HPLC analysis allowed detecting seven phenolic compounds: caffeic acid, ferulic acid, aromadendrin-4'-methyl ether (AME), isosakuranetin, artepillin C, baccharin and 2-dimethyl-6-carboxyethenyl-2H-1-benzopyran acid, which were the major ones throughout the 1-year monthly analysis. Caffeic acid was detected in all cultivated populations with mean of 4.0%. AME displayed the wide variation in relation to other compounds showing means values of 0.65 +/- 0.13% at last quarter. Isosakuranetin and artepillin C showed increasing concentrations with values between 0% and 1.4% and 0% and 1.09%, respectively. The obtained results allow suggesting that the best time for harvesting this plant, in order to obtain good qualitative and quantitative results for these phenolic compounds, is between December and April.
Resumo:
Introduction - Baccharis dracunculifolia, which has great potential for the development of new phytotherapeutic medicines, is the most important botanical source of the southeastern Brazilian propolis, known as green propolis on account of its color. Objective - To develop a reliable reverse-phase HPLC chromatographic method for the analysis of phenolic compounds in both B. dracunculifolia raw material and its hydroalcoholic extracts. Methodology - The method utilised a C(18) CLC-ODS (M) (4.6 x 250 mm) column with nonlinear gradient elution and UV detection at 280 nm. A procedure for the extraction of phenolic compounds using aqueous ethanol 90%, with the addition of veratraldehyde as the internal standard, was developed allowing the quantification of 10 compounds: caffeic acid, coumaric acid, ferulic acid, cinnamic acid, aromadendrin-4`-methyl ether, isosakuranetin, drupanin, artepillin C, baccharin and 2,2-dimethyl-6-carboxyethenyl-2H-1-benzopyran acid. Results - The developed method gave a good detection response with linearity in the range 20.83-800 mu g/mL and recovery in the range 81.25-93.20%, allowing the quantification of the analysed standards. Conclusion - The method presented good results for the following parameters: selectivity, linearity, accuracy, precision, robustness, as well as limit of detection and limit of quantitation. Therefore, this method could be considered as an analytical tool for the quality control of B. dracunculifolia raw material and its products in both cosmetic and pharmaceutical companies. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
Baccharis dracunculifolia De Candole (Asteraceae), a native plant from the Brazilian ""cerrado"", is widely used in folk medicine as an anti-inflammatory agent and for the treatment of gastrointestinal diseases. B. dracunculifolia has been described as the most important plant source of propolis in southeastern Brazil, which is called green propolis due to its color. The aim of the present study was to evaluate the mutagenic and antimutagenic effects of the ethyl acetate extract of B. dracunculifolia leaves (Bd-EAE) on Chinese hamster ovary cells. On one hand, the results showed a significant increase in the frequencies of chromosome aberrations at the highest Bd-EAE concentration tested (100 mu g/mL). On the other hand, the lowest Bd-EAE concentration tested (12.5 mu/mL) significantly reduced the chromosome damage induced by the chemotherapeutic agent doxorubicin. The present results indicate that Bd-EAE has the characteristics of a so-called Janus compound, that is, Bd-EAE is mutagenic at higher concentrations, whereas it displays a chemopreventive effect on doxorubicin-induced mutagenicity at lower concentrations. The constituents of B. dracunculifolia responsible for its mutagenic and antimutagenic effects are probably flavonoids and phenylpropanoids, since these compounds can act either as pro-oxidants or as free radical scavengers depending on their concentration.