246 resultados para Functionals
Resumo:
The performance of rank dependent preference functionals under risk is comprehensively evaluated using Bayesian model averaging. Model comparisons are made at three levels of heterogeneity plus three ways of linking deterministic and stochastic models: the differences in utilities, the differences in certainty equivalents and contextualutility. Overall, the"bestmodel", which is conditional on the form of heterogeneity is a form of Rank Dependent Utility or Prospect Theory that cap tures the majority of behaviour at both the representative agent and individual level. However, the curvature of the probability weighting function for many individuals is S-shaped, or ostensibly concave or convex rather than the inverse S-shape commonly employed. Also contextual utility is broadly supported across all levels of heterogeneity. Finally, the Priority Heuristic model, previously examined within a deterministic setting, is estimated within a stochastic framework, and allowing for endogenous thresholds does improve model performance although it does not compete well with the other specications considered.
Resumo:
Explicitly orbital-dependent approximations to the exchange-correlation energy functional of density functional theory typically not only depend on the single-particle Kohn-Sham orbitals but also on their occupation numbers in the ground-state Slater determinant. The variational calculation of the corresponding exchange-correlation potentials with the optimized effective potential (OEP) method therefore also requires a variation of the occupation numbers with respect to a variation in the effective single-particle potential, which is usually not taken into account. Here it is shown under which circumstances this procedure is justified.
Resumo:
We consider a family of variational problems on a Hilbert manifold parameterized by an open subset of a Banach manifold, and we discuss the genericity of the nondegeneracy condition for the critical points. Using classical techniques, we prove an abstract genericity result that employs the infinite dimensional Sard-Smale theorem, along the lines of an analogous result of B. White [29]. Applications are given by proving the genericity of metrics without degenerate geodesics between fixed endpoints in general (non compact) semi-Riemannian manifolds, in orthogonally split semi-Riemannian manifolds and in globally hyperbolic Lorentzian manifolds. We discuss the genericity property also in stationary Lorentzian manifolds.
Resumo:
Asymmetric kernels are quite useful for the estimation of density functions with bounded support. Gamma kernels are designed to handle density functions whose supports are bounded from one end only, whereas beta kernels are particularly convenient for the estimation of density functions with compact support. These asymmetric kernels are nonnegative and free of boundary bias. Moreover, their shape varies according to the location of the data point, thus also changing the amount of smoothing. This paper applies the central limit theorem for degenerate U-statistics to compute the limiting distribution of a class of asymmetric kernel functionals.
Resumo:
Bounds on the distribution function of the sum of two random variables with known marginal distributions obtained by Makarov (1981) can be used to bound the cumulative distribution function (c.d.f.) of individual treatment effects. Identification of the distribution of individual treatment effects is important for policy purposes if we are interested in functionals of that distribution, such as the proportion of individuals who gain from the treatment and the expected gain from the treatment for these individuals. Makarov bounds on the c.d.f. of the individual treatment effect distribution are pointwise sharp, i.e. they cannot be improved in any single point of the distribution. We show that the Makarov bounds are not uniformly sharp. Specifically, we show that the Makarov bounds on the region that contains the c.d.f. of the treatment effect distribution in two (or more) points can be improved, and we derive the smallest set for the c.d.f. of the treatment effect distribution in two (or more) points. An implication is that the Makarov bounds on a functional of the c.d.f. of the individual treatment effect distribution are not best possible.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The result that we treat in this article allows to the utilization of classic tools of convex analysis in the study of optimality conditions in the optimal control convex process for a Volterra-Stietjes linear integral equation in the Banach space G([a, b],X) of the regulated functions in [a, b], that is, the functions f : [a, 6] → X that have only descontinuity of first kind, in Dushnik (or interior) sense, and with an equality linear restriction. In this work we introduce a convex functional Lβf(x) of Nemytskii type, and we present conditions for its lower-semicontinuity. As consequence, Weierstrass Theorem garantees (under compacity conditions) the existence of solution to the problem min{Lβf(x)}. © 2009 Academic Publications.
Resumo:
In this paper we deal with the notion of regulated functions with values in a C*-algebra A and present examples using a special bi-dimensional C*-algebra of triangular matrices. We consider the Dushnik integral for these functions and shows that a convenient choice of the integrator function produces an integral homomorphism on the C*-algebra of all regulated functions ([a, b], A). Finally we construct a family of linear integral functionals on this C*-algebra.
Resumo:
Diese Arbeit unterstreicht das Potential von Hybridfunktionalen (B3LYP) für die Untersuchung einer großen Bandbreite von Systemen. Durch die Einbeziehung der exakten Hartree-Fock Austauschenergie kann B3LYP für molekulare und kristalline Systeme eingesetzt werden. Zum Beispiel können stark korrelierte Systeme mit B3LYP erfolgreich erforscht werden. Die elektronische Struktur von PAHs wurde mit B3LYP Hybriddichtefunktionalen untersucht. Mit der ∆SCF-Methode wurden Elektronenbindungsenergien bestimmt, welche die mit UPS gewonnenen experimentellen Resultate bestätigen und ergänzen. Symmetrieeigenschaften der molekularen Orbitale wurden analysiert, um eine Zuordnung und Einschätzung der zugehörigen Signalstärke zu ermöglichen. Während σ-artige Orbitale nur schwer durch UPS-Messungen an dünnen Filmen detektiert werden können, bieten Rechnungen eine detaillierte Einsicht in die verborgenen Teile der Spektren.rnWeiterhin wurden π−π-Komplexe untersucht, welche von verschiedenen Donor- und Akzeptor-Molekülen gebildet werden. Die Moleküle basieren auf polyzyklischen, aromatischen Kohlenwasserstoffen. Für Ladungstransferkomplexe finden DFT Rechnungen ein Minimum in der Oberfläche der potentiellen Energie. Diese attraktive Wechselwirkung wird durch Coulombanziehung verursacht. Allerdings ist die Coulombanziehung nicht die stärkste Wechselwirkung in Ladungstransferkomplexen. Die Einbeziehung von van der Waals-Korrekturen verbessert den intermolekularen Abstand und die Bindungsenergie.rnEine Verkleinerung der intermolekularen Abstände führt zu einer großen Verschiebung der HOMO- und LUMO-Energie.rnAus der Klasse der kristallinen korrelierten Systeme wurden Rb4O6 und FeSe untersucht. Im Falle von Rb4O6 führen Ladungsordnung und Korrelationen zu einem isolierenden Grundzustand. Das hypothetische druckabhängige Phasendiagramm wurde untersucht. Eine Erhöhung des Drucks führt zu einer vergrößerten Bandlücke. Bei etwa 75 GPa wird die Bandbreite W größer als der Bandabstand U und das System nimmt einen homogen gemischt valenten Zustand mit teilweise besetzten π−π-Orbitalen an. Für Drücke ab 160 GPa wird W sehr viel größer als U und das System wird metallisch.rnIm Fall von FeSe finden wir eine korrelierte und isolierende Phase bei hohen Drücken, während das System bei niedrigen Drücken supraleitendes Verhalten zeigt. Die Berechnungen der Elektronenstruktur mit dem Hybridfunktional B3LYP führt zum korrekten halbleitenden Grundzustand in der NiAs- und MnP-Struktur von FeSe. Die Rolle der Korrelationen, der Stöchiometrie und der Nähe zum Magnetismus wird besprochen. Im Speziellen wird gezeigt, dass die Phase mit NiAs-Struktur starke lokale Korrelationen aufweist, was zu einem halbleitenden Zustand in einem weiten Druckbereich führt.
Resumo:
This survey provides a self-contained account of M-estimation of multivariate scatter. In particular, we present new proofs for existence of the underlying M-functionals and discuss their weak continuity and differentiability. This is done in a rather general framework with matrix-valued random variables. By doing so we reveal a connection between Tyler's (1987) M-functional of scatter and the estimation of proportional covariance matrices. Moreover, this general framework allows us to treat a new class of scatter estimators, based on symmetrizations of arbitrary order. Finally these results are applied to M-estimation of multivariate location and scatter via multivariate t-distributions.
Resumo:
For probability distributions on ℝq, a detailed study of the breakdown properties of some multivariate M-functionals related to Tyler's [Ann. Statist. 15 (1987) 234] ‘distribution-free’ M-functional of scatter is given. These include a symmetrized version of Tyler's M-functional of scatter, and the multivariate t M-functionals of location and scatter. It is shown that for ‘smooth’ distributions, the (contamination) breakdown point of Tyler's M-functional of scatter and of its symmetrized version are 1/q and inline image, respectively. For the multivariate t M-functional which arises from the maximum likelihood estimate for the parameters of an elliptical t distribution on ν ≥ 1 degrees of freedom the breakdown point at smooth distributions is 1/(q + ν). Breakdown points are also obtained for general distributions, including empirical distributions. Finally, the sources of breakdown are investigated. It turns out that breakdown can only be caused by contaminating distributions that are concentrated near low-dimensional subspaces.