Generalized squeezing operators, bipartite Wigner functions and entanglement via Wehrl's entropy functionals
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
30/09/2013
20/05/2014
30/09/2013
20/05/2014
01/10/2008
|
Resumo |
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) We introduce a new class of unitary transformations based on the su(1, 1) Lie algebra that generalizes, for certain particular representations of its generators, well-known squeezing transformations in quantum optics. To illustrate our results, we focus on the two-mode bosonic representation and show how the parametric amplifier model can be modified in order to generate such a generalized squeezing operator. Furthermore, we obtain a general expression for the bipartite Wigner function which allows us to identify two distinct sources of entanglement, here labelled dynamical and kinematical entanglement. We also establish a quantitative estimate of entanglement for bipartite systems through some basic definitions of entropy functionals in continuous phase-space representations. |
Formato |
9 |
Identificador |
http://dx.doi.org/10.1088/0031-8949/78/04/045007 Physica Scripta. Bristol: Iop Publishing Ltd, v. 78, n. 4, p. 9, 2008. 0031-8949 http://hdl.handle.net/11449/24225 10.1088/0031-8949/78/04/045007 WOS:000259699900007 |
Idioma(s) |
eng |
Publicador |
Iop Publishing Ltd |
Relação |
Physica Scripta |
Direitos |
closedAccess |
Tipo |
info:eu-repo/semantics/article |