Generalized squeezing operators, bipartite Wigner functions and entanglement via Wehrl's entropy functionals


Autoria(s): Marchiolli, Marcelo A.; Galetti, Diogenes
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

30/09/2013

20/05/2014

30/09/2013

20/05/2014

01/10/2008

Resumo

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

We introduce a new class of unitary transformations based on the su(1, 1) Lie algebra that generalizes, for certain particular representations of its generators, well-known squeezing transformations in quantum optics. To illustrate our results, we focus on the two-mode bosonic representation and show how the parametric amplifier model can be modified in order to generate such a generalized squeezing operator. Furthermore, we obtain a general expression for the bipartite Wigner function which allows us to identify two distinct sources of entanglement, here labelled dynamical and kinematical entanglement. We also establish a quantitative estimate of entanglement for bipartite systems through some basic definitions of entropy functionals in continuous phase-space representations.

Formato

9

Identificador

http://dx.doi.org/10.1088/0031-8949/78/04/045007

Physica Scripta. Bristol: Iop Publishing Ltd, v. 78, n. 4, p. 9, 2008.

0031-8949

http://hdl.handle.net/11449/24225

10.1088/0031-8949/78/04/045007

WOS:000259699900007

Idioma(s)

eng

Publicador

Iop Publishing Ltd

Relação

Physica Scripta

Direitos

closedAccess

Tipo

info:eu-repo/semantics/article