1000 resultados para Folding mechanism


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this work was to elucidate the oxidative folding mechanism of the macrocyclic cystine knot protein MCoTI-II. We aimed to investigate how the six-cysteine residues distributed on the circular backbone of the reduced unfolded peptide recognize their correct partner and join up to form a complex cystine-knotted topology. To answer this question, we studied the oxidative folding of the naturally occurring peptide using a range of spectroscopic methods. For both oxidative folding and reductive unfolding, the same disulfide intermediate species was prevalent and was characterized to be a native-like two-disulfide intermediate in which the Cys(1)-Cys(18) disulfide bond was absent. Overall, the folding pathway of this head-to-tail cyclized protein was found to be similar to that of linear cystine knot proteins from the squash family of trypsin inhibitors. However, the pathway differs in an important way from that of the cyclotide kalata B1, in that the equivalent two-disulfide intermediate in that case is not a direct precursor of the native protein. The size of the embedded ring within the cystine knot motif appears to play a crucial role in the folding pathway. Larger rings contribute to the independence of disulfides and favor an on-pathway native-like intermediate that has a smaller energy barrier to cross to form the native fold. The fact that macrocyclic proteins are readily able to fold to a complex knotted structure in vitro in the absence of chaperones makes them suitable as protein engineering scaffolds that have remarkable stability.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We used in vivo (biological), in silico (computational structure prediction), and in vitro (model sequence folding) analyses of single-stranded DNA sequences to show that nucleic acid folding conservation is the selective principle behind a high-frequency single-nucleotide reversion observed in a three-nucleotide mutated motif of the Maize streak virus replication associated protein (Rep) gene. In silico and in vitro studies showed that the three-nucleotide mutation adversely affected Rep nucleic acid folding, and that the single-nucleotide reversion [C(601)A] restored wild-type-like folding. In vivo support came from infecting maize with mutant viruses: those with Rep genes containing nucleotide changes predicted to restore a wild-type-like fold [A(601)/G(601)] preferentially accumulated over those predicted to fold differently [C(601)/T(601)], which frequently reverted to A(601) and displaced the original population. We propose that the selection of native nucleic acid folding is an epigenetic effect, which might have broad implications in the evolution of plants and their viruses.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Pressure-jump (p-jump)-induced relaxation kinetics was used to explore the energy landscape of protein folding/unfolding of Y115W, a fluorescent variant of ribonuclease A. Pressure-jumps of 40MPa amplitude (5ms dead-time) were conducted both to higher (unfolding) and to lower (folding) pressure, in the range from 100 to 500MPa, between 30 and 50°C. Significant deviations from the expected symmetrical protein relaxation kinetics were observed. Whereas downward p-jumps resulted always in single exponential kinetics, the kinetics induced by upward p-jumps were biphasic in the low pressure range and monophasic at higher pressures. The relative amplitude of the slow phase decreased as a function of both pressure and temperature. At 50°C, only the fast phase remained. These results can be interpreted within the framework of a two-dimensional energy surface containing a pressure- and temperature-dependent barrier between two unfolded states differing in the isomeric state of the Asn-113–Pro-114 bond. Analysis of the activation volume of the fast kinetic phase revealed a temperature-dependent shift of the unfolding transition state to a larger volume. The observed compensation of this effect by glycerol offers an explanation for its protein stabilizing effect

Relevância:

40.00% 40.00%

Publicador:

Resumo:

I attempt to reconcile apparently conflicting factors and mechanisms that have been proposed to determine the rate constant for two-state folding of small proteins, on the basis of general features of the structures of transition states. Φ-Value analysis implies a transition state for folding that resembles an expanded and distorted native structure, which is built around an extended nucleus. The nucleus is composed predominantly of elements of partly or well-formed native secondary structure that are stabilized by local and long-range tertiary interactions. These long-range interactions give rise to connecting loops, frequently containing the native loops that are poorly structured. I derive an equation that relates differences in the contact order of a protein to changes in the length of linking loops, which, in turn, is directly related to the unfavorable free energy of the loops in the transition state. Kinetic data on loop extension mutants of CI2 and α-spectrin SH3 domain fit the equation qualitatively. The rate of folding depends primarily on the interactions that directly stabilize the nucleus, especially those in native-like secondary structure and those resulting from the entropy loss from the connecting loops, which vary with contact order. This partitioning of energy accounts for the success of some algorithms that predict folding rates, because they use these principles either explicitly or implicitly. The extended nucleus model thus unifies the observations of rate depending on both stability and topology.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We develop a heuristic model for chaperonin-facilitated protein folding, the iterative annealing mechanism, based on theoretical descriptions of "rugged" conformational free energy landscapes for protein folding, and on experimental evidence that (i) folding proceeds by a nucleation mechanism whereby correct and incorrect nucleation lead to fast and slow folding kinetics, respectively, and (ii) chaperonins optimize the rate and yield of protein folding by an active ATP-dependent process. The chaperonins GroEL and GroES catalyze the folding of ribulose bisphosphate carboxylase at a rate proportional to the GroEL concentration. Kinetically trapped folding-incompetent conformers of ribulose bisphosphate carboxylase are converted to the native state in a reaction involving multiple rounds of quantized ATP hydrolysis by GroEL. We propose that chaperonins optimize protein folding by an iterative annealing mechanism; they repeatedly bind kinetically trapped conformers, randomly disrupt their structure, and release them in less folded states, allowing substrate proteins multiple opportunities to find pathways leading to the most thermodynamically stable state. By this mechanism, chaperonins greatly expand the range of environmental conditions in which folding to the native state is possible. We suggest that the development of this device for optimizing protein folding was an early and significant evolutionary event.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Free GroEL binds denatured proteins very tightly: it retards the folding of barnase 400-fold and catalyzes unfolding fluctuations in native barnase and its folding intermediate. GroEL undergoes an allosteric transition from its tight-binding T-state to a weaker binding R-state on the cooperative binding of nucleotides (ATP/ADP) and GroES. The preformed GroEL.GroES.nucleotide complex retards the folding of barnase by only a factor of 4, and the folding rate is much higher than the ATPase activity that releases GroES from the complex. Binding of GroES and nucleotides to a preformed GroEL.denatured-barnase complex forms an intermediately fast-folding complex. We propose the following mechanism for the molecular chaperone. Denatured proteins bind to the resting GroEL.GroES.nucleotide complex. Fast-folding proteins are ejected as native structures before ATP hydrolysis. Slow-folding proteins enter chaperoning cycles of annealing and folding after the initial ATP hydrolysis. This step causes transient release of GroES and formation of the GroEL.denatured-protein complexes with higher annealing potential. The intermediately fast-folding complex is formed on subsequent rebinding of GroES. The ATPase activity of GroEL.GroES is thus the gatekeeper that selects for initial entry of slow-folding proteins to the chaperone action and then pumps successive transitions from the faster-folding R-states to the tighter-binding/stronger annealing T-states. The molecular chaperone acts as a combination of folding cage and an annealing machine.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Small, single-module proteins that fold in a single cooperative step may be paradigms for understanding early events in protein-folding pathways generally. Recent experimental studies of the 64-residue chymotrypsin inhibitor 2 (CI2) support a nucleation mechanism for folding, as do some computer stimulations. CI2 has a nucleation site that develops only in the transition state for folding. The nucleus is composed of a set of adjacent residues (an alpha-helix), stabilized by long-range interactions that are formed as the rest of the protein collapses around it. A simple analysis of the optimization of the rate of protein folding predicts that rates are highest when the denatured state has little residual structure under physiological conditions and no intermediates accumulate. This implies that any potential nucleation site that is composed mainly of adjacent residues should be just weakly populated in the denatured state and become structured only in a high-energy intermediate or transition state when it is stabilized by interactions elsewhere in the protein. Hierarchical mechanisms of folding in which stable elements of structure accrete are unfavorable. The nucleation-condensation mechanism of CI2 fulfills the criteria for fast folding. On the other hand, stable intermediates do form in the folding of more complex proteins, and this may be an unavoidable consequence of increasing size and nucleation at more than one site.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since its discovery in 1991, the bacterial periplasmic oxidative folding catalyst DsbA has been the focus of intense research. Early studies addressed why it is so oxidizing and how it is maintained in its less stable oxidized state. The crystal structure of Escherichia coli DsbA (EcDsbA) revealed that the oxidizing periplasmic enzyme is a distant evolutionary cousin of the reducing cytoplasmic enzyme thioredoxin. Recent significant developments have deepened our understanding of DsbA function, mechanism, and interactions: the structure of the partner membrane protein EcDsbB, including its complex with EcDsbA, proved a landmark in the field. Studies of DsbA machineries from bacteria other than E. coli K-12 have highlighted dramatic differences from the model organism, including a striking divergence in redox parameters and surface features. Several DsbA structures have provided the first clues to its interaction with substrates, and finally, evidence for a central role of DsbA in bacterial virulence has been demonstrated in a range of organisms. Here, we review current knowledge on DsbA, a bacterial periplasmic protein that introduces disulfide bonds into diverse substrate proteins and which may one day be the target of a new class of anti-virulence drugs to treat bacterial infection. Antioxid. Redox Signal. 14, 1729–1760.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Targeting the biosynthetic pathway of Coenzyme A (CoA) for drug development will compromise multiple cellular functions of the tubercular pathogen simultaneously. Structural divergence in the organization of the penultimate and final enzymes of CoA biosynthesis in the host and pathogen and the differences in their regulation mark out the final enzyme, dephosphocoenzyme A kinase (CoaE) as a potential drug target. Methodology/Principal Findings: We report here a complete biochemical and biophysical characterization of the M. tuberculosis CoaE, an enzyme essential for the pathogen's survival, elucidating for the first time the interactions of a dephosphocoenzyme A kinase with its substrates, dephosphocoenzyme A and ATP; its product, CoA and an intrinsic yet novel inhibitor, CTP, which helps modulate the enzyme's kinetic capabilities providing interesting insights into the regulation of CoaE activity. We show that the mycobacterial enzyme is almost 21 times more catalytically proficient than its counterparts in other prokaryotes. ITC measurements illustrate that the enzyme follows an ordered mechanism of substrate addition with DCoA as the leading substrate and ATP following in tow. Kinetic and ITC experiments demonstrate that though CTP binds strongly to the enzyme, it is unable to participate in DCoA phosphorylation. We report that CTP actually inhibits the enzyme by decreasing its Vmax. Not surprisingly, a structural homology search for the modeled mycobacterial CoaE picks up cytidylmonophosphate kinases, deoxycytidine kinases, and cytidylate kinases as close homologs. Docking of DCoA and CTP to CoaE shows that both ligands bind at the same site, their interactions being stabilized by 26 and 28 hydrogen bonds respectively. We have also assigned a role for the universal Unknown Protein Family 0157 (UPF0157) domain in the mycobacterial CoaE in the proper folding of the full length enzyme. Conclusions/Significance: In view of the evidence presented, it is imperative to assign a greater role to the last enzyme of Coenzyme A biosynthesis in metabolite flow regulation through this critical biosynthetic pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The molecular mechanism of helix nucleation in peptides and proteins is not yet understood and the question of whether sharp turns in the polypeptide backbone serve as nuclei for protein folding has evoked controversy1,2. A recent study of the conformation of a tetrapeptide containing the stereochemically constrained residue alpha-aminoisobutyric acid, both in solution and the solid state, yielded a structure consisting of two consecutive beta-turns, leading to an incipient 310 helical conformation3,4. This led us to speculate that specific tri- and tetra-peptide sequences may indeed provide a helical twist to the amino-terminal segment of helical regions in proteins and provide a nucleation site for further propagation. The transformation from a 310 helical structure to an alpha-helix should be facile and requires only small changes in the phi and psi conformational angles and a rearrangement of the hydrogen bonding pattern5. If such a mechanism is involved then it should be possible to isolate an incipient 310 helical conformation in a tripeptide amide or tetrapeptide sequence, based purely on the driving force derived from short-range interactions. We have synthesised and studied the model peptide pivaloyl-Pro-Pro-Ala-NHMe (compound I) and provide here spectroscopic evidence for a 310 helical conformation in compound I.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During meiosis, long-range interaction between homologous chromosomes is thought to be crucial for homology recognition, exchange of DNA strands, and production of normal haploid gametes. However, little is known about the identity of the proteins involved and the actual molecular mechanism(s) by which chromosomes recognize and recombine with their appropriate homologous partners. Single-molecule analyses have the potential to provide insights into our understanding of this fascinating and long-standing question. Using atomic force microscopy and magnetic tweezers techniques, we discovered that Hop1 protein, a key structural component of Saccharomyces cerevisiae synaptonemal complex, exhibits the ability to bridge noncontiguous DNA segments into intramolecular stem-loop structures in which the DNA segments appear to be fully synapsed within the filamentous protein stems. Additional evidence suggests that Hop1 folds DNA into rigid protein DNA filaments and higher-order nucleoprotein structures. Importantly, Hop1 promotes robust intra- and intermolecular synapsis between double-stranded DNA molecules, suggesting that juxtaposition of DNA sequences may assist in strand exchange between homologues by recombination-associated proteins. Finally, the evidence from ensemble experiments is consistent with the notion that Hop1 causes rigidification of DNA molecules. These results provide the first direct evidence for long-range protein-mediated DNA DNA synapsis, independent of crossover recombination, which is presumed to occur during meiotic recombination.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of the finite-amplitude folding of an isolated, linearly viscous layer under compression and imbedded in a medium of lower viscosity is treated theoretically by using a variational method to derive finite difference equations which are solved on a digital computer. The problem depends on a single physical parameter, the ratio of the fold wavelength, L, to the "dominant wavelength" of the infinitesimal-amplitude treatment, L_d. Therefore, the natural range of physical parameters is covered by the computation of three folds, with L/L_d = 0, 1, and 4.6, up to a maximum dip of 90°.

Significant differences in fold shape are found among the three folds; folds with higher L/L_d have sharper crests. Folds with L/L_d = 0 and L/L_d = 1 become fan folds at high amplitude. A description of the shape in terms of a harmonic analysis of inclination as a function of arc length shows this systematic variation with L/L_d and is relatively insensitive to the initial shape of the layer. This method of shape description is proposed as a convenient way of measuring the shape of natural folds.

The infinitesimal-amplitude treatment does not predict fold-shape development satisfactorily beyond a limb-dip of 5°. A proposed extension of the treatment continues the wavelength-selection mechanism of the infinitesimal treatment up to a limb-dip of 15°; after this stage the wavelength-selection mechanism no longer operates and fold shape is mainly determined by L/L_d and limb-dip.

Strain-rates and finite strains in the medium are calculated f or all stages of the L/L_d = 1 and L/L_d = 4.6 folds. At limb-dips greater than 45° the planes of maximum flattening and maximum flattening rat e show the characteristic orientation and fanning of axial-plane cleavage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple model of deploying tree leaves is assembled in different arrangements to produce polygonal foldable membranes for use as deployable structures. One family of folding patterns exhibits a small strain mechanism, which is investigated. Variations on the basic arrangements can be used to fold membranes with a discretized curvature.