1000 resultados para Fermionic integrable models


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The construction of non-Abelian affine Toda models is discussed in terms of its underlying Lie algebraic structure. It is shown that a subclass of such non-conformal two-dimensional integrable models naturally leads to the construction of a pair of actions, which share the same spectra and are related by canonical transformations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A bicomplex structure is associated with the Leznov-Saveliev equation of integrable models. The linear problem associated with the zero-curvature condition is derived in terms of the bicomplex linear equation. The explicit example of a non-Abelian conformal affine Toda model is discussed in detail and its conservation laws are derived from the zero-curvature representation of its equation of motion.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The zero curvature representation for two-dimensional integrable models is generalized to spacetimes of dimension d + 1 by the introduction of a d-form connection. The new generalized zero curvature conditions can be used to represent the equations of motion of some relativistic invariant field theories of physical interest in 2 + 1 dimensions (BF theories, Chern-Simons, 2 + 1 gravity and the CP1 model) and 3 + 1 dimensions (self-dual Yang-Mills theory and the Bogomolny equations). Our approach leads to new methods of constructing conserved currents and solutions. In a submodel of the 2 + 1-dimensional CP1 model, we explicitly construct an infinite number of previously unknown non-trivial conserved currents. For each positive integer spin representation of sl(2) we construct 2j + 1 conserved currents leading to 2j + 1 Lorentz scalar charges. (C) 1998 Elsevier B.V. B.V.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We study the noncommutative generalization of (Euclidean) integrable models in two dimensions, specifically the sine- and sinh-Gordon and the U(N) principal chiral models. By looking at tree-level amplitudes for the sinh-Gordon model we show that its naive noncommutative generalization is not integrable. on the other hand, the addition of extra constraints, obtained through the generalization of the zero-curvature method, renders the model integrable. We construct explicit nonlocal nontrivial conserved charges for the U(N) principal chiral model using the Brezin-Itzykson-Zinn-Justin-Zuber method. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Supersymmetry is formulated for integrable models based on the sl(2 1) loop algebra endowed with a principal gradation. The symmetry transformations which have half-integer grades generate supersymmetry. The sl(2 1) loop algebra leads to N=2 supersymmetric mKdV and sinh-Gordon equations. The corresponding N=1 mKdV and sinh-Gordon equations are obtained via reduction induced by twisted automorphism. Our method allows for a description of a non-local symmetry structure of supersymmetric integrable models. © 2003 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this thesis we will investigate some properties of one-dimensional quantum systems. From a theoretical point of view quantum models in one dimension are particularly interesting because they are strongly interacting, since particles cannot avoid each other in their motion, and you we can never ignore collisions. Yet, integrable models often generate new and non-trivial solutions, which could not be found perturbatively. In this dissertation we shall focus on two important aspects of integrable one- dimensional models: Their entanglement properties at equilibrium and their dynamical correlators after a quantum quench. The first part of the thesis will be therefore devoted to the study of the entanglement entropy in one- dimensional integrable systems, with a special focus on the XYZ spin-1/2 chain, which, in addition to being integrable, is also an interacting model. We will derive its Renyi entropies in the thermodynamic limit and its behaviour in different phases and for different values of the mass-gap will be analysed. In the second part of the thesis we will instead study the dynamics of correlators after a quantum quench , which represent a powerful tool to measure how perturbations and signals propagate through a quantum chain. The emphasis will be on the Transverse Field Ising Chain and the O(3) non-linear sigma model, which will be both studied by means of a semi-classical approach. Moreover in the last chapter we will demonstrate a general result about the dynamics of correlation functions of local observables after a quantum quench in integrable systems. In particular we will show that if there are not long-range interactions in the final Hamiltonian, then the dynamics of the model (non equal- time correlations) is described by the same statistical ensemble that describes its statical properties (equal-time correlations).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Thermodynamic Bethe Ansatz analysis is carried out for the extended-CP^N class of integrable 2-dimensional Non-Linear Sigma Models related to the low energy limit of the AdS_4xCP^3 type IIA superstring theory. The principal aim of this program is to obtain further non-perturbative consistency check to the S-matrix proposed to describe the scattering processes between the fundamental excitations of the theory by analyzing the structure of the Renormalization Group flow. As a noteworthy byproduct we eventually obtain a novel class of TBA models which fits in the known classification but with several important differences. The TBA framework allows the evaluation of some exact quantities related to the conformal UV limit of the model: effective central charge, conformal dimension of the perturbing operator and field content of the underlying CFT. The knowledge of this physical quantities has led to the possibility of conjecturing a perturbed CFT realization of the integrable models in terms of coset Kac-Moody CFT. The set of numerical tools and programs developed ad hoc to solve the problem at hand is also discussed in some detail with references to the code.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study the exact solution of an N-state vertex model based on the representation of the U(q)[SU(2)] algebra at roots of unity with diagonal open boundaries. We find that the respective reflection equation provides us one general class of diagonal K-matrices having one free-parameter. We determine the eigenvalues of the double-row transfer matrix and the respective Bethe ansatz equation within the algebraic Bethe ansatz framework. The structure of the Bethe ansatz equation combine a pseudomomenta function depending on a free-parameter with scattering phase-shifts that are fixed by the roots of unity and boundary variables. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider the raise and peel model of a one-dimensional fluctuating interface in the presence of an attractive wall. The model can also describe a pair annihilation process in disordered unquenched media with a source at one end of the system. For the stationary states, several density profiles are studied using Monte Carlo simulations. We point out a deep connection between some profiles seen in the presence of the wall and in its absence. Our results are discussed in the context of conformal invariance ( c = 0 theory). We discover some unexpected values for the critical exponents, which are obtained using combinatorial methods. We have solved known ( Pascal`s hexagon) and new (split-hexagon) bilinear recurrence relations. The solutions of these equations are interesting in their own right since they give information on certain classes of alternating sign matrices.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study the symmetries of the soliton spectrum of a pair of T-dual integrable models, invariant under global SL(2)(q) circle times U(1) transformations. They represent an integrable perturbation of the reduced Gepner parafermions, based on certain gauged SL(3)-WZW model. Their (semiclassical) topological soliton solutions, carrying isospin and belonging to the root of unity representations of q-deformed SU(2)(q)-algebra are obtained. We derive the semiclassical particle spectrum of these models, which is further used to prove their T-duality properties. (c) 2005 Elsevier B.V All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Two new families of T-dual integrable models of dyonic type are constructed. They represent specific A(n)((1)) singular non-abelian affine Toda models having U(1) global symmetry. Their I-soliton spectrum contains both neutral and U(I)-charged topological solitons sharing the main properties of 4-dimensional Yang-Mills-Higgs monopoles and dyons. The semiclassical quantization of these solutions as well as the exact counterterms and the coupling constant renormalization are studied. (C) 2001 Elsevier B.V. B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A method is presented for constructing the general solution to higher Hamiltonians (nonquadratic in the momenta) of the Toda hierarchies of integrable models associated with a simple Lie group G. The method is representation independent and is based on a modified version of the Lax operator. It constitutes a generalization of the method used to construct the solutions of the Toda molecule models. The SL(3) and SL(4) cases are discussed in detail. © 1990 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Física - IFT

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)