Noncommutative integrable field theories in 2d
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
20/05/2014
20/05/2014
01/12/2003
|
Resumo |
We study the noncommutative generalization of (Euclidean) integrable models in two dimensions, specifically the sine- and sinh-Gordon and the U(N) principal chiral models. By looking at tree-level amplitudes for the sinh-Gordon model we show that its naive noncommutative generalization is not integrable. on the other hand, the addition of extra constraints, obtained through the generalization of the zero-curvature method, renders the model integrable. We construct explicit nonlocal nontrivial conserved charges for the U(N) principal chiral model using the Brezin-Itzykson-Zinn-Justin-Zuber method. (C) 2003 Elsevier B.V. All rights reserved. |
Formato |
437-454 |
Identificador |
http://dx.doi.org/10.1016/j.nuclphysb.2003.09.014 Nuclear Physics B. Amsterdam: Elsevier B.V., v. 673, n. 3, p. 437-454, 2003. 0550-3213 http://hdl.handle.net/11449/23926 10.1016/j.nuclphysb.2003.09.014 WOS:000186603300002 |
Idioma(s) |
eng |
Publicador |
Elsevier B.V. |
Relação |
Nuclear Physics B |
Direitos |
closedAccess |
Tipo |
info:eu-repo/semantics/article |