942 resultados para Factorization of matrices
Resumo:
In the recently proposed framework of hard pion chiral perturbation theory, the leading chiral logarithms are predicted to factorize with respect to the energy dependence in the chiral limit. We have scrutinized this assumption in the case of vector and scalar pion form factors FV;S(s) by means of standard chiral perturbation theory and dispersion relations. We show that this factorization property is valid for the elastic contribution to the dispersion integrals for FV;S(s) but it is violated starting at three loops when the inelastic four-pion contributions arise.
Resumo:
Reprinted from the American journal of mathematics, v.14.
Resumo:
Mode of access: Internet.
Resumo:
2000 Mathematics Subject Classification: 16R10, 16R20, 16R50
Resumo:
2000 Mathematics Subject Classification: 13P05, 14M15, 14M17, 14L30.
Resumo:
Dissertação apresentada para obtenção do grau de Doutor em Matemática na especialidade de Equações Diferenciais, pela Universidade Nova de Lisboa,Faculdade de Ciências e Tecnologia
Resumo:
For a Lévy process ξ=(ξt)t≥0 drifting to −∞, we define the so-called exponential functional as follows: Formula Under mild conditions on ξ, we show that the following factorization of exponential functionals: Formula holds, where × stands for the product of independent random variables, H− is the descending ladder height process of ξ and Y is a spectrally positive Lévy process with a negative mean constructed from its ascending ladder height process. As a by-product, we generate an integral or power series representation for the law of Iξ for a large class of Lévy processes with two-sided jumps and also derive some new distributional properties. The proof of our main result relies on a fine Markovian study of a class of generalized Ornstein–Uhlenbeck processes, which is itself of independent interest. We use and refine an alternative approach of studying the stationary measure of a Markov process which avoids some technicalities and difficulties that appear in the classical method of employing the generator of the dual Markov process.
Resumo:
We consider a new class of non-self-adjoint matrices that arise from an indefinite self- adjoint linear pencil of matrices, and obtain the spectral asymptotics of the spectra as the size of the matrices diverges to infinity. We prove that the spectrum is qualitatively different when a certain parameter c equals 0, and when it is non-zero, and that certain features of the spectrum depend on Diophantine properties of c.
Resumo:
In this paper, a new algebraic-graph method for identification of islanding in power system grids is proposed. The proposed method identifies all the possible cases of islanding, due to the loss of a equipment, by means of a factorization of the bus-branch incidence matrix. The main features of this new method include: (i) simple implementation, (ii) high speed, (iii) real-time adaptability, (iv) identification of all islanding cases and (v) identification of the buses that compose each island in case of island formation. The method was successfully tested on large-scale systems such as the reduced south Brazilian system (45 buses/72 branches) and the south-southeast Brazilian system (810 buses/1340 branches). (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Typical properties of sparse random matrices over finite (Galois) fields are studied, in the limit of large matrices, using techniques from the physics of disordered systems. For the case of a finite field GF(q) with prime order q, we present results for the average kernel dimension, average dimension of the eigenvector spaces and the distribution of the eigenvalues. The number of matrices for a given distribution of entries is also calculated for the general case. The significance of these results to error-correcting codes and random graphs is also discussed.
Resumo:
In this paper we present algorithms which work on pairs of 0,1- matrices which multiply again a matrix of zero and one entries. When applied over a pair, the algorithms change the number of non-zero entries present in the matrices, meanwhile their product remains unchanged. We establish the conditions under which the number of 1s decreases. We recursively define as well pairs of matrices which product is a specific matrix and such that by applying on them these algorithms, we minimize the total number of non-zero entries present in both matrices. These matrices may be interpreted as solutions for a well known information retrieval problem, and in this case the number of 1 entries represent the complexity of the retrieve and information update operations.
Resumo:
We study a totally discontinuous interval map defined in [0,1] which is associated to a deformation of the shift map on two symbols 0−1. We define a sequence of transition matrices which characterizes the effect of the interval map on a family of partitions of the interval [0,1]. Recursive algorithms that build the sequence of matrices and their left and right eigenvectors are deduced. Moreover, we compute the Artin zeta function for the interval map.
Resumo:
This letter shows that the matrix can be used for redundancy and observability analysis of metering systems composed of PMU measurements and conventional measurements (power and voltage magnitude measurements). The matrix is obtained via triangular factorization of the Jacobian matrix. Observability analysis and restoration is carried out during the triangular factorization of the Jacobian matrix, and the redundancy analysis is made exploring the matrix structure. As a consequence, the matrix can be used for metering system planning considering conventional and PMU measurements. These features of the matrix will be outlined and illustrated by numerical examples.
Resumo:
The purpose of this paper was to produce controlled-release matrices with 120 mg of propranolol hydrochloride (PHCl) employing hydroxypropyl methylcellulose (HPMC, Methocel (R) K100) as the gel forming barrier. Although this class of polymers has been commonly used for direct compression, with the intent of use reduced polymer concentrations to achieve controlled drug release, in this study tablets were produced by the wet granulation process. HPMC percentages ranged from 15-34 % and both soluble and non soluble diluents were tested in the 10 proposed tablet compositions. Dissolution testing of matrices was performed over a 12 h period in 1.2 pH medium (the first 2 h) and in pH 6.8 (10 h). Dissolution kinetic analysis was performed by applying Zero-order, First-order and Higuchi models with the aim of elucidating the drug release mechanism. All physical-chemical characteristics such as average weight, friability, hardness, diameter, height, and drug content were in accordance to the pharmacopeial specifications. Taking into account that PHCl is a very soluble drug, low concentrations (15 %) of HPMC were sufficient to reduce the drug release and to promote controlled release of PHCl, presenting good dissolution efficiencies, between 50 % and 63 %. The Higuchi model has presented the best fit to the 15 % HPMC formulations, indicating that the main release mechanism was diffusion. It could be concluded that the application of the wet granulation method reduced matrices erosion and promoted controlled release of the drug at low HPMC percentages.
Resumo:
A Latin square is pan-Hamiltonian if the permutation which defines row i relative to row j consists of a single cycle for every i j. A Latin square is atomic if all of its conjugates are pan-Hamiltonian. We give a complete enumeration of atomic squares for order 11, the smallest order for which there are examples distinct from the cyclic group. We find that there are seven main classes, including the three that were previously known. A perfect 1-factorization of a graph is a decomposition of that graph into matchings such that the union of any two matchings is a Hamiltonian cycle. Each pan-Hamiltonian Latin square of order n describes a perfect 1-factorization of Kn,n, and vice versa. Perfect 1-factorizations of Kn,n can be constructed from a perfect 1-factorization of Kn+1. Six of the seven main classes of atomic squares of order 11 can be obtained in this way. For each atomic square of order 11, we find the largest set of Mutually Orthogonal Latin Squares (MOLS) involving that square. We discuss algorithms for counting orthogonal mates, and discover the number of orthogonal mates possessed by the cyclic squares of orders up to 11 and by Parker's famous turn-square. We find that the number of atomic orthogonal mates possessed by a Latin square is not a main class invariant. We also define a new sort of Latin square, called a pairing square, which is mapped to its transpose by an involution acting on the symbols. We show that pairing squares are often orthogonal mates for symmetric Latin squares. Finally, we discover connections between our atomic squares and Franklin's diagonally cyclic self-orthogonal squares, and we correct a theorem of Longyear which uses tactical representations to identify self-orthogonal Latin squares in the same main class as a given Latin square.