Transition matrices characterizing a certain totally discontinuous map of the interval
| Data(s) |
10/01/2017
10/01/2017
15/12/2016
15/12/2056
|
|---|---|
| Resumo |
We study a totally discontinuous interval map defined in [0,1] which is associated to a deformation of the shift map on two symbols 0−1. We define a sequence of transition matrices which characterizes the effect of the interval map on a family of partitions of the interval [0,1]. Recursive algorithms that build the sequence of matrices and their left and right eigenvectors are deduced. Moreover, we compute the Artin zeta function for the interval map. |
| Identificador |
Transition matrices characterizing a certain totally discontinuous map of the interval, L. Bandeira, C. Correia Ramos, Journal of Mathematical Analysis and Applications,Volume 444, Issue 2, 15 December 2016, 1274-1303 0022-247X http://dx.doi.org/10.1016/j.jmaa.2016.07.016 http://hdl.handle.net/10174/19655 lmzb@uevora.pt ccr@uevora.pt 721 dx.doi.org/10.1016/j.jmaa.2016.07.016 |
| Idioma(s) |
por |
| Publicador |
Elsevier / Journal of Mathematical Analysis and Applications |
| Direitos |
embargoedAccess |
| Palavras-Chave | #Transition matrices #Subshifts of finite type #Perron eigenvectors #Zeta function |
| Tipo |
article |