434 resultados para FPGA.
Resumo:
Recent trends show an increasing number of weblabs, implemented at universities and schools, supporting practical training in technical courses and providing the ability to remotely conduct experiments. However, their implementation is typically based on individual architectures, unable of being reconfigured with different instruments/modules usually required by every experiment. In this paper, we discuss practical guidelines for implementing reconfigurable weblabs that support both local and remote control interfaces. The underlying infrastructure is based on reconfigurable, low-cost, FPGA-based boards supporting several peripherals that are used for the local interface. The remote interface is powered by a module capable of communicating with an Ethernet based network and that can either correspond to an internal core of the FPGA or an external device. These two approaches are discussed in the paper, followed by a practical implementation example.
Resumo:
Adopting standard-based weblab infrastructures can be an added value for spreading their influence and acceptance in education. This paper suggests a solution based on the IEEE1451.0 Std. and FPGA technology for creating reconfigurable weblab infrastructures using Instruments and Modules (I&Ms) described through standard Hardware Description Language (HDL) files. It describes a methodology for creating and binding I&Ms into an IEEE1451-module embedded in a FPGA-based board able to be remotely controlled/accessed using IEEE1451-HTTP commands. At the end, an example of a step-motor controller module bond to that IEEE1451-module is described.
Resumo:
O uso das Field-Programmable Gate Array tem crescido de forma exponencial. Com isto dito, é importante que os engenheiros electrotécnicos estejam familiarizados com este tipo de tecnologia. Foi com o intuído de passar estas valências para os alunos do ISEP, que surgiu a ideia de criar um sistema didáctico, que permitisse ao alunos aprender a trabalhar com estes dispositivos. O seguinte trabalho iniciou-se com base num estudo das características destes dispositivos e das suas potencialidades, seguido de uma avaliação do que o mercado tem para oferecer. Posteriormente, com base em toda a informação reunida, foi definida a arquitectura do sistema, que levou selecção de dispositivos a incluir no mesmo, e culminando na concepção do esquema eléctrico do sistema e da placa de circuito impresso correspondente ao protótipo do mesmo. As principais directivas para este projecto foram o uso de uma FPGA de alta densidade e a concepção da ferramenta com o custo de projecto o mais reduzido possível.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Electrónica e telecomunicações
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Eletrotécnica Ramo de Automação e Eletrónica Industrial
Resumo:
Single processor architectures are unable to provide the required performance of high performance embedded systems. Parallel processing based on general-purpose processors can achieve these performances with a considerable increase of required resources. However, in many cases, simplified optimized parallel cores can be used instead of general-purpose processors achieving better performance at lower resource utilization. In this paper, we propose a configurable many-core architecture to serve as a co-processor for high-performance embedded computing on Field-Programmable Gate Arrays. The architecture consists of an array of configurable simple cores with support for floating-point operations interconnected with a configurable interconnection network. For each core it is possible to configure the size of the internal memory, the supported operations and number of interfacing ports. The architecture was tested in a ZYNQ-7020 FPGA in the execution of several parallel algorithms. The results show that the proposed many-core architecture achieves better performance than that achieved with a parallel generalpurpose processor and that up to 32 floating-point cores can be implemented in a ZYNQ-7020 SoC FPGA.
Resumo:
Partial dynamic reconfiguration of FPGAs can be used to implement complex applications using the concept of virtual hardware. In this work we have used partial dynamic reconfiguration to implement a JPEG decoder with reduced area. The image decoding process was adapted to be implemented on the FPGA fabric using this technique. The architecture was tested in a low cost ZYNQ-7020 FPGA that supports dynamic reconfiguration. The results show that the proposed solution needs only 40% of the resources utilized by a static implementation. The performance of the dynamic solution is about 9X slower than the static solution by trading-off internal resources of the FPGA. A throughput of 7 images per second is achievable with the proposed partial dynamic reconfiguration solution.
Resumo:
This paper proposes an FPGA-based architecture for onboard hyperspectral unmixing. This method based on the Vertex Component Analysis (VCA) has several advantages, namely it is unsupervised, fully automatic, and it works without dimensionality reduction (DR) pre-processing step. The architecture has been designed for a low cost Xilinx Zynq board with a Zynq-7020 SoC FPGA based on the Artix-7 FPGA programmable logic and tested using real hyperspectral datasets. Experimental results indicate that the proposed implementation can achieve real-time processing, while maintaining the methods accuracy, which indicate the potential of the proposed platform to implement high-performance, low cost embedded systems.
Resumo:
Maintaining a high level of data security with a low impact on system performance is more challenging in wireless multimedia applications. Protocols that are used for wireless local area network (WLAN) security are known to significantly degrade performance. In this paper, we propose an enhanced security system for a WLAN. Our new design aims to decrease the processing delay and increase both the speed and throughput of the system, thereby making it more efficient for multimedia applications. Our design is based on the idea of offloading computationally intensive encryption and authentication services to the end systems’ CPUs. The security operations are performed by the hosts’ central processor (which is usually a powerful processor) before delivering the data to a wireless card (which usually has a low-performance processor). By adopting this design, we show that both the delay and the jitter are significantly reduced. At the access point, we improve the performance of network processing hardware for real-time cryptographic processing by using a specialized processor implemented with field-programmable gate array technology. Furthermore, we use enhanced techniques to implement the Counter (CTR) Mode with Cipher Block Chaining Message Authentication Code Protocol (CCMP) and the CTR protocol. Our experiments show that it requires timing in the range of 20–40 μs to perform data encryption and authentication on different end-host CPUs (e.g., Intel Core i5, i7, and AMD 6-Core) as compared with 10–50 ms when performed using the wireless card. Furthermore, when compared with the standard WiFi protected access II (WPA2), results show that our proposed security system improved the speed to up to 3.7 times.
Resumo:
This paper presents the design and the prototype implementation of a three-phase power inverter developed to drive a motor-in-wheel. The control system is implemented in a FPGA (Field Programmable Gate Array) device. The paper describes the Field Oriented Control (FOC) algorithm and the Space Vector Modulation (SVM) technique that were implemented. The control platform uses a Spartan-3E FPGA board, programmed with Verilog language. Simulation and experimental results are presented to validate the developed system operation under different load conditions. Finally are presented conclusions based on the experimental results.
Resumo:
Dissertação de mestrado integrado em Engenharia Eletrónica Industrial e de Computadores
Resumo:
Tese de Doutoramento em Engenharia Eletrónica e Computadores.
Resumo:
El avance en la potencia de cómputo en nuestros días viene dado por la paralelización del procesamiento, dadas las características que disponen las nuevas arquitecturas de hardware. Utilizar convenientemente este hardware impacta en la aceleración de los algoritmos en ejecución (programas). Sin embargo, convertir de forma adecuada el algoritmo en su forma paralela es complejo, y a su vez, esta forma, es específica para cada tipo de hardware paralelo. En la actualidad los procesadores de uso general más comunes son los multicore, procesadores paralelos, también denominados Symmetric Multi-Processors (SMP). Hoy en día es difícil hallar un procesador para computadoras de escritorio que no tengan algún tipo de paralelismo del caracterizado por los SMP, siendo la tendencia de desarrollo, que cada día nos encontremos con procesadores con mayor numero de cores disponibles. Por otro lado, los dispositivos de procesamiento de video (Graphics Processor Units - GPU), a su vez, han ido desarrollando su potencia de cómputo por medio de disponer de múltiples unidades de procesamiento dentro de su composición electrónica, a tal punto que en la actualidad no es difícil encontrar placas de GPU con capacidad de 200 a 400 hilos de procesamiento paralelo. Estos procesadores son muy veloces y específicos para la tarea que fueron desarrollados, principalmente el procesamiento de video. Sin embargo, como este tipo de procesadores tiene muchos puntos en común con el procesamiento científico, estos dispositivos han ido reorientándose con el nombre de General Processing Graphics Processor Unit (GPGPU). A diferencia de los procesadores SMP señalados anteriormente, las GPGPU no son de propósito general y tienen sus complicaciones para uso general debido al límite en la cantidad de memoria que cada placa puede disponer y al tipo de procesamiento paralelo que debe realizar para poder ser productiva su utilización. Los dispositivos de lógica programable, FPGA, son dispositivos capaces de realizar grandes cantidades de operaciones en paralelo, por lo que pueden ser usados para la implementación de algoritmos específicos, aprovechando el paralelismo que estas ofrecen. Su inconveniente viene derivado de la complejidad para la programación y el testing del algoritmo instanciado en el dispositivo. Ante esta diversidad de procesadores paralelos, el objetivo de nuestro trabajo está enfocado en analizar las características especificas que cada uno de estos tienen, y su impacto en la estructura de los algoritmos para que su utilización pueda obtener rendimientos de procesamiento acordes al número de recursos utilizados y combinarlos de forma tal que su complementación sea benéfica. Específicamente, partiendo desde las características del hardware, determinar las propiedades que el algoritmo paralelo debe tener para poder ser acelerado. Las características de los algoritmos paralelos determinará a su vez cuál de estos nuevos tipos de hardware son los mas adecuados para su instanciación. En particular serán tenidos en cuenta el nivel de dependencia de datos, la necesidad de realizar sincronizaciones durante el procesamiento paralelo, el tamaño de datos a procesar y la complejidad de la programación paralela en cada tipo de hardware. Today´s advances in high-performance computing are driven by parallel processing capabilities of available hardware architectures. These architectures enable the acceleration of algorithms when thes ealgorithms are properly parallelized and exploit the specific processing power of the underneath architecture. Most current processors are targeted for general pruposes and integrate several processor cores on a single chip, resulting in what is known as a Symmetric Multiprocessing (SMP) unit. Nowadays even desktop computers make use of multicore processors. Meanwhile, the industry trend is to increase the number of integrated rocessor cores as technology matures. On the other hand, Graphics Processor Units (GPU), originally designed to handle only video processing, have emerged as interesting alternatives to implement algorithm acceleration. Current available GPUs are able to implement from 200 to 400 threads for parallel processing. Scientific computing can be implemented in these hardware thanks to the programability of new GPUs that have been denoted as General Processing Graphics Processor Units (GPGPU).However, GPGPU offer little memory with respect to that available for general-prupose processors; thus, the implementation of algorithms need to be addressed carefully. Finally, Field Programmable Gate Arrays (FPGA) are programmable devices which can implement hardware logic with low latency, high parallelism and deep pipelines. Thes devices can be used to implement specific algorithms that need to run at very high speeds. However, their programmability is harder that software approaches and debugging is typically time-consuming. In this context where several alternatives for speeding up algorithms are available, our work aims at determining the main features of thes architectures and developing the required know-how to accelerate algorithm execution on them. We look at identifying those algorithms that may fit better on a given architecture as well as compleme
Resumo:
Magdeburg, Univ., Fak. für Elektrotechnik und Informationstechnik, Diss., 2009
Resumo:
[s.c.]