974 resultados para Electric currents, Alternating
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
We have recently introduced the concept of whole-body asymmetric MRI systems [1]. In this theoretical study, we investigate the PNS characteristics of whole-body asymmetric gradient systems as compared to conventional symmetric systems. Recent experimental evidence [2] supports the hypothesis of transverse gradients being the largest contributor of PNS due to induced electric currents. Asymmetric head gradient coils have demonstrated benefits in the past [3]. The numerical results are based on an anatomically-accurate 2mm-human voxel-phantom NORMAN [4]. The results of this study can facilitate the optimization of whole-body asymmetric gradients in terms of patient comfort/safety (less PNS), while prospering the use of asymmetric MRI systems for in-vivo medical interventions.
Resumo:
Different types of HTS joints of Bi-2212/Ag tapes and laminates, which are fabricated by dip-coating and partial-melt processes, have been investigated. All joints are prepared using green single and laminated tapes and according to the scheme: coating-joining-processing. The heat treated tapes have critical current (Ic) between 7 and 27 A, depending on tape thickness and the number of Bi-2212 ceramic layers in laminated tapes. It is found that the current transport properties of joints depend on the type of laminate, joint configuration and joint treatment, Ic losses in joints of Bi-2212 tapes and laminates are attributed to defects in their structure, such as pores, secondary phases and misalignment of Bi-2212 grains near the Ag edges. By optimizing joint configuration, current transmission up to 100% is achieved for both single tapes and laminated tapes.
Resumo:
Charge transport properties in organic semiconductors depend strongly on molecular order. Here we demonstrate field-effect transistors where drain current flows through a precisely defined array of nanostripes made of crystalline and highly ordered molecules. The molecular stripes are fabricated across the channel of the transistor by a stamp-assisted deposition of the molecular semiconductors from a solution. As the solvent evaporates, the capillary forces drive the solution to form menisci under the stamp protrusions. The solute precipitates only in the regions where the solution is confined by the menisci once the critical concentration is reached and self-organizes into molecularly ordered stripes 100-200 nm wide and a few monolayers high. The charge mobility measured along the stripes is 2 orders of magnitude larger than the values measured for spin-coated thin films.
Resumo:
This thesis deals with theoretical modeling of the electrodynamics of auroral ionospheres. In the five research articles forming the main part of the thesis we have concentrated on two main themes: Development of new data-analysis techniques and study of inductive phenomena in the ionospheric electrodynamics. The introductory part of the thesis provides a background for these new results and places them in the wider context of ionospheric research. In this thesis we have developed a new tool (called 1D SECS) for analysing ground based magnetic measurements from a 1-dimensional magnetometer chain (usually aligned in the North-South direction) and a new method for obtaining ionospheric electric field from combined ground based magnetic measurements and estimated ionospheric electric conductance. Both these methods are based on earlier work, but contain important new features: 1D SECS respects the spherical geometry of large scale ionospheric electrojet systems and due to an innovative way of implementing boundary conditions the new method for obtaining electric fields can be applied also at local scale studies. These new calculation methods have been tested using both simulated and real data. The tests indicate that the new methods are more reliable than the previous techniques. Inductive phenomena are intimately related to temporal changes in electric currents. As the large scale ionospheric current systems change relatively slowly, in time scales of several minutes or hours, inductive effects are usually assumed to be negligible. However, during the past ten years, it has been realised that induction can play an important part in some ionospheric phenomena. In this thesis we have studied the role of inductive electric fields and currents in ionospheric electrodynamics. We have formulated the induction problem so that only ionospheric electric parameters are used in the calculations. This is in contrast to previous studies, which require knowledge of the magnetospheric-ionosphere coupling. We have applied our technique to several realistic models of typical auroral phenomena. The results indicate that inductive electric fields and currents are locally important during the most dynamical phenomena (like the westward travelling surge, WTS). In these situations induction may locally contribute up to 20-30% of the total ionospheric electric field and currents. Inductive phenomena do also change the field-aligned currents flowing between the ionosphere and magnetosphere, thus modifying the coupling between the two regions.
Resumo:
In this paper we demonstrate the design of a low-cost optical current sensor. The sensor principle is the Faraday rotation of a light beam through a magneto-optical material, SF2, when a magnetic field is present. The prototype has a high sensitivity and a high linearity for currents ranging from 0 up to 800 A. The error of the optical fibre sensor is smaller than 1% for electric currents over 175 A.
Resumo:
针对光纤自身对光谱的非线性衰减的影响,提出了一种基于傅里叶变换的光谱校正方法。首先对是否经过光纤的两种情况下光电倍增管的输出电流进行傅里叶变换,得到光谱频域中的校正函数,然后通过傅里叶逆变换得到光谱域中的校正函数。为实现测试,建立一个光电检测系统,在可见光范围内进行测试。分别对是否带有光纤的两种情况下数据进行采集,使用该校正方法可以使光线的衰减得到较好的修正,误差小于1.54%。实验结果表明,该方法对特定的光纤传导系统的光谱非线性衰减有较好的校正效果。
Resumo:
The results of investigations into the cause of an accelerated corrosion of copper sheathing and keel cooling pipe of a 36' wooden trawler are reported. The corrosion is attributed to the stray electric currents originating from the electrical wiring system. The sources of stray currents and the remedial measures have been suggested.
Resumo:
A measurement system for magnetic fields or electric currents uses a single-core fluxgate, magneto-inductive or magneto-impedance device driven from a radio frequency excitation source. Flux nulling feedback circuitry is provided to maintain the core of the sensor at substantially zero net flux and improve the linearity and dynamic response of the sensor system. A high pass filter is provided for reducing the dc effects of the ohmic resistance of the coil and lead wires on the effectiveness of the flux nulling feedback.
Resumo:
A measurement system for magnetic fields and electric currents uses a single-core fluxgate device driven with a radio frequency excitation source and is provided with a means to indicate saturation of the core of the sensor. A means is provided for detecting overload of the sensor as the core approaches continuous saturation using a pair of demodulators and a comparator.
Resumo:
The atomistic pseudopotential quantum mechanical calculations are used to study the transport in million atom nanosized metal-oxide-semiconductor field-effect transistors. In the charge self-consistent calculation, the quantum mechanical eigenstates of closed systems instead of scattering states of open systems are calculated. The question of how to use these eigenstates to simulate a nonequilibrium system, and how to calculate the electric currents, is addressed. Two methods to occupy the electron eigenstates to yield the charge density in a nonequilibrium condition are tested and compared. One is a partition method and another is a quasi-Fermi level method. Two methods are also used to evaluate the current: one uses the ballistic and tunneling current approximation, another uses the drift-diffusion method. (C) 2009 American Institute of Physics. [doi:10.1063/1.3248262]
Resumo:
A monotone scheme for finite volume simulation of magnetohydrodynamic internal flows at high Hartmann number is presented. The numerical stability is analysed with respect to the electromagnetic force. Standard central finite differences applied to finite volumes can only be numerically stable if the vector products involved in this force are computed with a scheme using a fully staggered grid. The electromagnetic quantities (electric currents and electric potential) must be shifted by half the grid size from the mechanical ones (velocity and pressure). An integral treatment of the boundary layers is used in conjunction with boundary conditions for electrically conducting walls. The simulations are performed with inhomogeneous electrical conductivities of the walls and reach high Hartmann numbers in three-dimensional simulations, even though a non-adaptive grid is used.
Resumo:
Electromagnetic processing of materials (EPM) is one of the most widely practiced and fast growing applications of magnetic and electric forces to fluid flow. EPM is encountered in both industrial processes and laboratory investigations. Applications range in scale from nano-particle manipulation to tonnes of liquid metal treated in the presence of various configurations of magnetic fields. Some of these processes are specifically designed and made possible by the use of the electromagnetic force, like the magnetic levitation of liquid droplets, whilst others involve electric currents essential for electrothermal or electrochemical reasons, for instance, in electrolytic metal production and in induction melting. An insight for the range of established and novel EPM applications can be found in the review presented by Asai [1] in the EPM-2003 conference proceedings.
Resumo:
The values of material physical properties are vital for the successful use of numerical simulations for electromagnetic processing of materials. The surface tension of materials can be determined from the experimental measurement of the surface oscillation frequency of liquid droplets. In order for this technique to be used, a positioning field is required that results in a modification to the oscillation frequency. A number of previous analytical models have been developed that mainly focus on electrically conducting droplets positioned using an A.C. electromagnetic field, but due to the turbulent flow resulting from the high electromagnetic fields required to balance gravity, reliable measurements have largely been limited to microgravity. In this work axisymmetric analytical and numerical models are developed, which allow the surface tension of a diamagnetic droplet positioned in a high DC magnetic field to be determined from the surface oscillations. In the case of D.C. levitation there is no internal electric currents with resulting Joule heating, Marangoni flow and other effects that introduce additional physics that complicates the measurement process. The analytical solution uses the linearised Navier-Stokes equations in the inviscid case. The body force from a DC field is potential, in contrast to the AC case, and it can be derived from Maxwell equations giving a solution for the magnetic field in the form of a series expansion of Legendre polynomials. The first few terms in this expansion represent a constant and gradient magnetic field valid close to the origin, which can be used to position the droplet. Initially the mathematical model is verified in microgravity conditions using a numerical model developed to solve the transient electromagnetics, fluid flow and thermodynamic equations. In the numerical model (as in experiment) the magnetic field is obtained using electrical current carrying coils, which provides the confinement force for a liquid droplet. The model incorporates free surface deformation to accurately model the oscillations that result from the interaction between the droplet and the non-uniform external magnetic field. A comparison is made between the analytical perturbation theory and the numerical pseudo spectral approximation solutions for small amplitude oscillations.