931 resultados para Document Segmentation
Resumo:
A fast and efficient segmentation algorithm based on the Boundary Contour System/Feature Contour System (BCS/FCS) of Grossberg and Mingolla [3] is presented. This implementation is based on the FFT algorithm and the parallelism of the system.
Resumo:
An improved Boundary Contour System (BCS) neural network model of preattentive vision is applied to two images that produce strong "pop-out" of emergent groupings in humans. In humans these images generate groupings collinear with or perpendicular to image contrasts. Analogous groupings occur in computer simulations of the model. Long-range cooperative and short-range competitive processes of the BCS dynamically form the stable groupings of texture regions in response to the images.
Resumo:
The Grey-White Decision Network is introduced as an application of an on-center, off-surround recurrent cooperative/competitive network for segmentation of magnetic resonance imaging (MRI) brain images. The three layer dynamical system relaxes into a solution where each pixel is labeled as either grey matter, white matter, or "other" matter by considering raw input intensity, edge information, and neighbor interactions. This network is presented as an example of applying a recurrent cooperative/competitive field (RCCF) to a problem with multiple conflicting constraints. Simulations of the network and its phase plane analysis are presented.
Resumo:
We compare the effect of different text segmentation strategies on speech based passage retrieval of video. Passage retrieval has mainly been studied to improve document retrieval and to enable question answering. In these domains best results were obtained using passages defined by the paragraph structure of the source documents or by using arbitrary overlapping passages. For the retrieval of relevant passages in a video, using speech transcripts, no author defined segmentation is available. We compare retrieval results from 4 different types of segments based on the speech channel of the video: fixed length segments, a sliding window, semantically coherent segments and prosodic segments. We evaluated the methods on the corpus of the MediaEval 2011 Rich Speech Retrieval task. Our main conclusion is that the retrieval results highly depend on the right choice for the segment length. However, results using the segmentation into semantically coherent parts depend much less on the segment length. Especially, the quality of fixed length and sliding window segmentation drops fast when the segment length increases, while quality of the semantically coherent segments is much more stable. Thus, if coherent segments are defined, longer segments can be used and consequently less segments have to be considered at retrieval time.
Resumo:
The long term goal of this research is to develop a program able to produce an automatic segmentation and categorization of textual sequences into discourse types. In this preliminary contribution, we present the construction of an algorithm which takes a segmented text as input and attempts to produce a categorization of sequences, such as narrative, argumentative, descriptive and so on. Also, this work aims at investigating a possible convergence between the typological approach developed in particular in the field of text and discourse analysis in French by Adam (2008) and Bronckart (1997) and unsupervised statistical learning.
Resumo:
Dans la dernière décennie, une abondante littérature a documenté la situation des Rroms d'Europe Centrale et de l'Est, où a émergé une nouvelle élite politiquement activiste. Mais chez les Tsiganes d'Europe de l'Ouest, l’activisme politique d’une élite semblait absent. Cette étude de terrain a été réalisée chez Gitans de Perpignan, à la recherche d’une action et d’une élite politique chez ce groupe, dans le contexte culturel d’une société segmentaire à pouvoir diffus, frappée d’exclusion par la société majoritaire. En effet, je propose que le concept de société segmentaire puisse s’appliquer aux Gitans, et que l’exclusion des Gitans par les païos (non Gitans) constitue un déni de la réalité relationnelle des Gitans avec la majorité païa. Enfin, l’enquête a révélé la position de «médiateurs culturels» des différents agents qui interviennent entre le monde des Gitans et celui des païos. C’est à travers le rôle de «médiateurs culturels» qu’émerge peut-être une élite politique.
Resumo:
Les néphropaties (maladie des tissus rénaux) postradiques constituent l'un des facteurs limitants pour l'élaboration des plans de traitement lors des radiothérapies abdominales. Le processus actuel, qui consiste à évaluer la fonctionnalité relative des reins grâce à une scintigraphie gamma deux dimensions, ne permet pas d'identifier les portions fonctionnelles qui pourraient être évitées lors de l' élaboration des plans de traitement. Une méthode permettant de cartographier la fonctionnalité rénale en trois dimensions et d'extraire un contour fonctionnel utilisable lors de la planification a été développée à partir de CT double énergie injectés à l'iode. La concentration en produit de contraste est considérée reliée à la fonctionnalité rénale. La technique utilisée repose sur la décomposition à trois matériaux permettant de reconstruire des images en concentration d'iode. Un algorithme de segmentation semi-automatisé basé sur la déformation hiérarchique et anamorphique de surfaces permet ensuite d'extraire le contour fonctionnel des reins. Les premiers résultats obtenus avec des images patient démontrent qu'une utilisation en clinique est envisageable et pourra être bénéfique.
A new approach to segmentation based on fusing circumscribed contours, region growing and clustering
Resumo:
One of the major problems in machine vision is the segmentation of images of natural scenes. This paper presents a new proposal for the image segmentation problem which has been based on the integration of edge and region information. The main contours of the scene are detected and used to guide the posterior region growing process. The algorithm places a number of seeds at both sides of a contour allowing stating a set of concurrent growing processes. A previous analysis of the seeds permits to adjust the homogeneity criterion to the regions's characteristics. A new homogeneity criterion based on clustering analysis and convex hull construction is proposed
Resumo:
In this paper a colour texture segmentation method, which unifies region and boundary information, is proposed. The algorithm uses a coarse detection of the perceptual (colour and texture) edges of the image to adequately place and initialise a set of active regions. Colour texture of regions is modelled by the conjunction of non-parametric techniques of kernel density estimation (which allow to estimate the colour behaviour) and classical co-occurrence matrix based texture features. Therefore, region information is defined and accurate boundary information can be extracted to guide the segmentation process. Regions concurrently compete for the image pixels in order to segment the whole image taking both information sources into account. Furthermore, experimental results are shown which prove the performance of the proposed method
Resumo:
An unsupervised approach to image segmentation which fuses region and boundary information is presented. The proposed approach takes advantage of the combined use of 3 different strategies: the guidance of seed placement, the control of decision criterion, and the boundary refinement. The new algorithm uses the boundary information to initialize a set of active regions which compete for the pixels in order to segment the whole image. The method is implemented on a multiresolution representation which ensures noise robustness as well as computation efficiency. The accuracy of the segmentation results has been proven through an objective comparative evaluation of the method
Resumo:
In image segmentation, clustering algorithms are very popular because they are intuitive and, some of them, easy to implement. For instance, the k-means is one of the most used in the literature, and many authors successfully compare their new proposal with the results achieved by the k-means. However, it is well known that clustering image segmentation has many problems. For instance, the number of regions of the image has to be known a priori, as well as different initial seed placement (initial clusters) could produce different segmentation results. Most of these algorithms could be slightly improved by considering the coordinates of the image as features in the clustering process (to take spatial region information into account). In this paper we propose a significant improvement of clustering algorithms for image segmentation. The method is qualitatively and quantitative evaluated over a set of synthetic and real images, and compared with classical clustering approaches. Results demonstrate the validity of this new approach
Resumo:
In this paper a novel rank estimation technique for trajectories motion segmentation within the Local Subspace Affinity (LSA) framework is presented. This technique, called Enhanced Model Selection (EMS), is based on the relationship between the estimated rank of the trajectory matrix and the affinity matrix built by LSA. The results on synthetic and real data show that without any a priori knowledge, EMS automatically provides an accurate and robust rank estimation, improving the accuracy of the final motion segmentation
Resumo:
A novel technique for estimating the rank of the trajectory matrix in the local subspace affinity (LSA) motion segmentation framework is presented. This new rank estimation is based on the relationship between the estimated rank of the trajectory matrix and the affinity matrix built with LSA. The result is an enhanced model selection technique for trajectory matrix rank estimation by which it is possible to automate LSA, without requiring any a priori knowledge, and to improve the final segmentation
Resumo:
In image processing, segmentation algorithms constitute one of the main focuses of research. In this paper, new image segmentation algorithms based on a hard version of the information bottleneck method are presented. The objective of this method is to extract a compact representation of a variable, considered the input, with minimal loss of mutual information with respect to another variable, considered the output. First, we introduce a split-and-merge algorithm based on the definition of an information channel between a set of regions (input) of the image and the intensity histogram bins (output). From this channel, the maximization of the mutual information gain is used to optimize the image partitioning. Then, the merging process of the regions obtained in the previous phase is carried out by minimizing the loss of mutual information. From the inversion of the above channel, we also present a new histogram clustering algorithm based on the minimization of the mutual information loss, where now the input variable represents the histogram bins and the output is given by the set of regions obtained from the above split-and-merge algorithm. Finally, we introduce two new clustering algorithms which show how the information bottleneck method can be applied to the registration channel obtained when two multimodal images are correctly aligned. Different experiments on 2-D and 3-D images show the behavior of the proposed algorithms
Resumo:
In this paper, an information theoretic framework for image segmentation is presented. This approach is based on the information channel that goes from the image intensity histogram to the regions of the partitioned image. It allows us to define a new family of segmentation methods which maximize the mutual information of the channel. Firstly, a greedy top-down algorithm which partitions an image into homogeneous regions is introduced. Secondly, a histogram quantization algorithm which clusters color bins in a greedy bottom-up way is defined. Finally, the resulting regions in the partitioning algorithm can optionally be merged using the quantized histogram