954 resultados para Dietary sodium restriction


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study was carried out to determine the ileal digestibility of Arg and Lys in acutely heatstressed broilers using diets varying in Arg:Lys ratio, NaCl concentration, and Met Source. Male broilers were maintained at 22degreesC from 21 to 33 d of age and then at 32degreesC from 33 to 38 d of age. From 28 to 38 d of age, birds were fed a diet with an Arg:Lys ratio of 1.05 and 3 g of supplemental NaCl/kg of diet with or without L-arg free base to increase the Arg:Lys to 1.35, and with or without 3 g/kg of additional NaCl. Methionine was supplied as equimolar amounts of DL-Met or 2-hydroxy-4-(methylthio)-butanoic acid in a 2 x 2 x 2 design. At 38 d of age, digesta were collected from the terminal ileum, and amino acid analyses were conducted on feed and digesta samples and compared with acid-insoluble ash (dietary celite) to calculate the apparent ileal digestibilities of Lys and Arg. Increasing the NaCl concentration and the presence of HMB significantly decreased the digestibility of both Arg and Lys, whereas increasing the Arg:Lys ratio increased the digestibility of only Arg but did increase BW gain (P = 0.08). An interaction between dietary NaCl and Arg:Lys ratio as well as the 3-way interaction suggested that dietary NaCl could affect the apparent ileal digestibility of Arg and Lys at certain Arg:Lys ratios and the response may be influenced by the Met source.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Periconceptional environment may influence embryo development, ultimately affecting adult health. Here, we review the rodent model of maternal low-protein diet specifically during the preimplantation period (Emb-LPD) with normal nutrition during subsequent gestation and postnatally. This model, studied mainly in the mouse, leads to cardiovascular, metabolic and behavioural disease in adult offspring, with females more susceptible. We evaluate the sequence of events from diet administration that may lead to adult disease. Emb-LPD changes maternal serum and/or uterine fluid metabolite composition, notably with reduced insulin and branched-chain amino acids. This is sensed by blastocysts through reduced mammalian target of rapamycin complex 1 signalling. Embryos respond by permanently changing the pattern of development of their extra-embryonic lineages, trophectoderm and primitive endoderm, to enhance maternal nutrient retrieval during subsequent gestation. These compensatory changes include stimulation in proliferation, endocytosis and cellular motility, and epigenetic mechanisms underlying them are being identified. Collectively, these responses act to protect fetal growth and likely contribute to offspring competitive fitness. However, the resulting growth adversely affects long-term health because perinatal weight positively correlates with adult disease risk. We argue that periconception environmental responses reflect developmental plasticity and 'decisions' made by embryos to optimise their own development, but with lasting consequences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is an established relationship between salt intake and risk of high blood pressure (BP). High blood pressure (hypertension) is a risk factor for cardiovascular disease (CVD) and scientific evidence shows that a high salt intake can contribute to the development of elevated blood pressure. The Scientific Advisory Committee on Nutrition (SACN) recommend a target reduction in the average salt intake of the population to no more than 6g per day. This figure has been adopted by the UK government as the recommended maximum salt intake for adults and children aged 11 years and over. Following publication of the SACN report in 2003, the government began a programme of reformulation work with the food industry aimed at reducing the salt content of processed food products. Voluntary salt reduction targets were first set in 2006, and subsequently in 2009, 2011 and 2014, for a range of food categories that contribute the most to the population’s salt intakes. Population representative urinary sodium data were collected in England in 2005-06, 2008 (UK), 2011 and 2014. In the latest survey assessment, estimated salt intake of adults aged 19 to 64 years in England was assessed from 24-hour urinary sodium excretion of 689 adults, selected to be representative of this section of the population. Estimated salt intake was calculated using the equation 17.1mmol of sodium = 1g of salt and assumes all sodium was derived from salt. The data were validated as representing daily intake by checking completeness of the urine collections by the para-amino benzoic acid (PABA) method. Urine samples were collected over five months (May to September) in 2014, concurrently with a similar survey in Scotland. This report presents the results for the latest survey assessment (2014) and a new analysis of the trend in estimated salt intake over time. The trend analysis is based on data for urinary sodium excretion from this survey and previous sodium surveys (including data from the National Diet and Nutrition Survey Rolling Programme (NDNS RP) Years 1 to 5) carried out in England over the last ten years, between 2005-06 and 2014. This data has been adjusted to take account of biases resulting from differences between surveys in laboratory analytical methods used for sodium. The analysis provides a revised assessment of the trend in estimated salt intake over time. The trend analysis in this report supersedes the trend analysis published in the report of the 2011 England urinary sodium survey.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The vast majority of the known biological effects of the renin–angiotensin system are mediated by the type-1 (AT1) receptor, and the functions of the type-2 (AT2) receptor are largely unknown. We investigated the role of the AT2 receptor in the vascular and renal responses to physiological increases in angiotensin II (ANG II) in mice with targeted deletion of the AT2 receptor gene. Mice lacking the AT2 receptor (AT2-null mice) had slightly elevated systolic blood pressure (SBP) compared with that of wild-type (WT) control mice (P < 0.0001). In AT2-null mice, infusion of ANG II (4 pmol/kg/min) for 7 days produced a marked and sustained increase in SBP [from 116 ± 0.5 to 208 ± 1 mmHg (P < 0.0001) (1 mmHg = 133 Pa)] and reduction in urinary sodium excretion (UNaV) [from 0.6 ± 0.01 to 0.05 ± 0.002 mM/day (P < 0.0001)] whereas neither SBP nor UNaV changed in WT mice. AT2-null mice had low basal levels of renal interstitial fluid bradykinin (BK), and cyclic guanosine 3′,5′-monophosphate, an index of nitric oxide production, compared with WT mice. In WT mice, dietary sodium restriction or ANG II infusion increased renal interstitial fluid BK, and cyclic guanosine 3′,5′-monophosphate by ≈4-fold (P < 0.0001) whereas no changes were observed in AT2-null mice. These results demonstrate that the AT2 receptor is necessary for normal physiological responses of BK and nitric oxide to ANG II. Absence of the AT2 receptor leads to vascular and renal hypersensitivity to ANG II, including sustained antinatriuresis and hypertension. These results strongly suggest that the AT2 receptor plays a counterregulatory protective role mediated via BK and nitric oxide against the antinatriuretic and pressor actions of ANG II.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aldosterone acting on the brain stimulates sodium appetite and sympathetic activity by mechanisms that are still not completely clear. In the present study, we investigated the effects of chronic infusion of aldosterone and acute injection of the mineralocorticoid receptor (MR) antagonist RU 28318 into the fourth ventricle (4th V) on sodium appetite. Male Wistar rats (280-350 g) with a stainless-steel cannula in either the 4th V or lateral ventricle (LV) were used. Daily intake of 0.3 M NaCl increased to 46 ± 15 and 130 ± 6 ml/24 h after 6 days of infusion of 10 and 100 ng/h of aldosterone into the 4th V (intake with vehicle infusion: 2 ± 1 ml/24 h). Water intake fell slightly and not consistently, and food intake was not affected by aldosterone. Sodium appetite induced by diuretic (furosemide) combined with 24 h of a low-sodium diet fell from 12 ± 1.7 ml/2 h to 5.6 ± 0.8 ml/2 h after injection of the MR antagonist RU 28318 (100 ng/2 μl) into the 4th V. RU 28318 also reduced the intake of 0.3 M NaCl induced by 9 days of a low-sodium diet from 9.5 ± 2.6 ml/2 h to 1.2 ± 0.6 ml/2 h. Infusion of 100 or 500 ng/h of aldosterone into the LV did not affect daily intake of 0.3 M NaCl. The results are functional evidence that aldosterone acting on MR in the hindbrain activates a powerful mechanism involved in the control of sodium appetite. © 2013 the American Physiological Society.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Estudos recentes mostram que restrições na ingestão de sódio podem aumentar a resistência à insulina (RI) e induzir alterações nas lipoproteínas séricas e em marcadores de inflamação semelhantes às encontradas na síndrome metabólica (SM). Realizou-se uma revisão sistemática da literatura sobre os efeitos da restrição do consumo de sódio sobre a SM ou a RI. Nove artigos foram incluídos na revisão. A restrição no consumo de sódio associou-se ao aumento da RI em dois artigos e a diminuição em três outros. Em sete dos nove artigos, a restrição na ingestão de sal determinou redução da pressão arterial e em dois artigos ocorreram efeitos adversos em marcadores da SM. A maioria dos estudos mostrou efeitos benéficos da restrição moderada de sódio da dieta associados ou não a outras modificações nutricionais ou ao aumento da atividade física. Novos estudos são necessários para avaliar os efeitos de reduções moderadas no consumo de sódio sobre a SM e a RI.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Intense physical training and dietary energy restriction have been associated with consequences such as nutritional amenorrhea. We investigated the effects of intense physical training, food restriction or the combination of both strategies on estrous cyclicity in female rats, and the relationship between leptin ad these effects. Twenty-seven female Wistar rats were distributed into four groups: SF: sedentary, fed ad libitum; SR: sedentary subjected to 50% food restriction (based on the food intake of their fed counterparts); TF: trained (physical training on a motor treadmill with a gradual increase in speed and time), fed ad libitum; TR; trained with 50% food restriction. We analysed estrous cyclicity, plasma leptin and estradiol as well as chemical composition of the carcass, body weight variation. and weight of ovaries and perirenal adipose tissue. Data demonstrate that physical training alone was not responsible for significant modifications in either carcass chemical composition or reproductive function. Food restriction reduced leptin levels in all animals and interrupted the estrous cyclicity in some animals, but only the combination of food restriction and physical training was capable of interrupting the estrous cyclicity in all animals. Leptin was not directly related to estrous cyclicity. From our findings, it may be concluded that there is an additive or synergistic effect of energy intake restriction and energy expenditure by intense physical training on estrous cyclicity. Leptin appears to be one among others factors related to estrous cycle, but it probably acts indirectly.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Two studies were conducted to examine the effects of including NaCl at various rates in grain-based supplements for Friesian cows grazing established, dominant (>90%), rainfed kikuyu (Pennisetum clandestinum cv. Common) pastures during summer and autumn in a humid sub-tropical environment. In study 1 (19 January-27 March 1998), 48 cows (36 multiparous, 12 primiparous; 27-96 days postpartum) were allocated to one of four groups based on genetic merit, milk production, liveweight (LW) and days postpartum. They were fed (2.7 kg dry matter (DM) per cow, twice-a-day) one of four isoenergetic and isonitrogenous barley grain-based concentrates containing NaCl at concentrations (% as-fed) of either 0 (SC1), 1.1 (SC2), 2.2 (SC3) or 3.3 (SC4). Maximum temperature humidity index (THImax) was greater than or equal to78 during 50% of the experimental period. Concentrate NaCl content had no effect (P>0.05) on daily milk yield or LW change but daily yields of 4% fat corrected milk (FCM), fat and protein were higher (P0.05) among treatments at 7.6+/-1.24 kg DM per cow. In study 2 (18 January 1999-1 March 1999), 48 cows (32 pluriparous, 16 primiparous: 32-160 days postpartum) were fed (2.7 kg DM per cow twice-a-day) one of two isoenergetic and isonitrogenous barley grain-based concentrates containing NaCl at concentrations (% as-fed) of 0 (control) or 2.2 (HSC). THImax was greater than or equal to78 during 34% of days in the experimental period. Yields of milk, FCM, fat and protein were lower (P0.05) by concentrate NaCl content. These studies indicate that NaCl supplementation can be beneficial in terms of milk production during warm, humid conditions as opposed to milder conditions. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Neuropeptide Y (NPY) is present in the adrenal medulla, in sympathetic neurons as well as in the circulation. This peptide not only exerts a direct vasoconstrictor effect, but also potentiates the vasoconstriction evoked by norepinephrine and sympathetic nerve stimulation. The vasoconstrictor effect of norepinephrine is also enhanced by salt loading and reduced by salt depletion. The purpose of this study was therefore to assess whether there exists a relationship between dietary sodium intake and the levels of circulating NPY. Uninephrectomized normotensive rats were maintained for 3 weeks either on a low, a regular or a high sodium intake. On the day of the experiment, plasma levels of NPY and catecholamines were measured in the unanesthetized animals. There was no significant difference in plasma norepinephrine and epinephrine levels between the 3 groups of rats. Plasma NPY levels were the lowest (65.4 +/- 8.8 fmol/ml, n-10, Mean +/- SEM) in salt-restricted and the highest (151.2 +/- 25 fmol/ml, n-14, p less than 0.02) in salt-loaded animals. Intermediate values were obtained in rats kept on a regular sodium intake (117.6 +/- 20.1 fmol/ml). These findings are therefore compatible with the hypothesis that sodium balance might to some extent influence blood pressure regulation via changes in circulating NPY levels which in turn modify blood pressure responsiveness.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The goal of this study was to investigate the effect of sodium intake on renal tissue oxygenation in humans. To this purpose, we measured renal hemodynamics, renal sodium handling, and renal oxygenation in normotensive (NT) and hypertensive (HT) subjects after 1 week of a high-sodium and 1 week of a low-sodium diet. Renal oxygenation was measured using blood oxygen level-dependent magnetic resonance. Tissue oxygenation was determined by the measurement of R2* maps on 4 coronal slices covering both kidneys. The mean R2* values in the medulla and cortex were calculated, with a low R2* indicating a high tissue oxygenation. Ten male NT (mean age: 26.5+/-7.4 years) and 8 matched HT subjects (mean age: 28.8+/-5.7 years) were studied. Cortical R2* was not different under the 2 conditions of salt intake. Medullary R2* was significantly lower under low sodium than high sodium in both NT and HT subjects (28.1+/-0.8 versus 31.3+/-0.6 s(-1); P<0.05 in NT; and 27.9+/-1.5 versus 30.3+/-0.8 s(-1); P<0.05, in HT), indicating higher medullary oxygenation under low-sodium conditions. In NT subjects, medullary oxygenation was positively correlated with proximal reabsorption of sodium and negatively with absolute distal sodium reabsorption, but not with renal plasma flow. In HT subjects, medullary oxygenation correlated with the 24-hour sodium excretion but not with proximal or with the distal handling of sodium. These data demonstrate that dietary sodium intake influences renal tissue oxygenation, low sodium intake leading to an increased renal medullary oxygenation both in normotensive and young hypertensive subjects.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Objetivos: Determinar si existe diferencia en la ganancia interdialítica entre los pacientes al ser tratados con flujo de dializado (Qd) de 400 mL/min y 500 mL/min. Diseño: Se realizó un estudio de intervención, cruzado, aleatorizado, doble ciego en pacientes con enfermedad renal crónica en hemodiálisis para determinar diferencias en la ganancia de peso interdialítica entre los pacientes tratados con flujo de dializado (Qd) de 400 ml/min y 500 ml/min. Pacientes: Se analizaron datos de 46 pacientes en hemodiálisis crónica con Qd de 400 ml/min y 45 con Qd de 500 ml/min. Análisis: La prueba de hipótesis para evaluar diferencias en la ganancia interdialítica y las otras variables entre los grupos se realizó mediante la prueba T para muestras pareadas. Para el análisis de correlación se calculó el coeficiente de Pearson. Resultados: No hubo diferencia significativa en ganancia interdialítica usando Qd de 400 ml/min vs 500 ml/min (2.37 ± 0.7 vs 2.41 ± 0.6, p=0.41) ni en Kt/V (1.57 ± 0.25 vs 1.59 ± 0.23, p = 0.45), potasio (4.9 ± 1.1 vs 5.1 ± 1.0, p=0.45), fosforo (4.5 ± 1.2 vs 4.4 ± 1.2, p=0.56) o hemoglobina (11.3 ± 1.8 vs 11.3 ± 1.6, p=0.96). Conclusiones: En pacientes con peso ≤ 65 Kg el uso de Qd de 400 ml/min no se asocia con menor ganancia interdialítica de peso. No hay diferencia en la eficiencia de diálisis lo que sugiere que es una intervención segura a corto plazo.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Low birth weight has been associated with increased obesity in adulthood. It has been shown that dietary salt restriction during intrauterine life induces low birth weight and insulin resistance in adult Wistar rats. The present study had a two-fold objective: to evaluate the effects that low salt intake during pregnancy and lactation has on the amount and distribution of adipose tissue; and to determine whether the phenotypic changes in fat mass in this model are associated with alterations in the activity of the renin-angiotensin system. Maternal salt restriction was found to reduce birth weight in male and female offspring. In adulthood, the female offspring of dams fed the low-salt diet presented higher adiposity indices than those seen in the offspring of dams fed a normal-salt diet. This was attributed to the fact that adipose tissue mass (retroperitoneal but not gonadal, mesenteric or inguinal) was greater in those rats than in the offspring of dams fed a normal diet. The adult offspring of dams fed the low-salt diet, compared to those dams fed a normal-salt diet, presented the following: plasma leptin levels higher in males and lower in females; plasma renin activity higher in males but not in females; and no differences in body weight, mean arterial blood pressure or serum angiotensin-converting enzyme activity. Therefore, low salt intake during pregnancy might lead to the programming of obesity in adult female offspring. (c) 2009 Elsevier Inc. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Heart failure (HF) is a complex syndrome that involves changes in behavioral, neural and endocrine regulatory systems. Dietary salt restriction along with pharmacotherapy is considered an essential component in the effective management of symptomatic HF patients. However, it is well recognized that HF patients typically have great difficulty in restricting sodium intake. We hypothesized that under HF altered activity in systems that normally function to regulate body fluid and cardiovascular homeostasis could produce an increased preference for the taste of salt. Therefore, this study was conducted to evaluate the perceived palatability (defined as salt preference) of food with different concentrations of added salt in compensated chronically medicated HF patients and comparable control subjects. Healthy volunteers (n = 25) and medicated, clinically stable HF patients (n = 38, NYHA functional class II or III) were interviewed and given an evaluation to assess their preferences for different amounts of saltiness. Three salt concentrations (0.58, 0.82, and 1.16 g/100 g) of bean soup were presented to the subjects. Salt preference for each concentration was quantified using an adjective scale (unpleasant, fair or delicious). Healthy volunteers preferred the soup with medium salt concentration (p = 0.042), HF patients disliked the low concentration (p < 0.001) and preferred the high concentration of salted bean soup (p < 0.001). When compared to healthy volunteers, HF patients demonstrated a significantly greater preference for the soup with a high salt concentration (p = 0.038). It is concluded that medicated, compensated patients under chronic treatment for HF have an increased preference for salt. (C) 2011 Elsevier Ltd. All rights reserved,

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cobb male broiler chicks (1,000) on new litter were used to evaluate effects of dietary electrolyte balance [DEB; Na+K-Cl, milliequivalents (mEq) per kilogram] under tropical summer conditions. Corn-soybean meal-based mash diets had salt (NaCl) alone or in combination with one or more supplements: sodium bicarbonate (NaHCO3), ammonium chloride (NH4Cl), or potassium bicarbonate (KHCO3). A completely randomized design, with five starter and grower feed treatments (control: 145, then 130 mEq/kg; or 0, 120, 240, or 360 mEq/kg throughout) and four replicate pens (1.5 x 3.2 m) per treatment (50 chicks per pen), was used. Diets were analyzed for Na, K, and Cl for confirmation. There were no significant (P < 0.05) effects of treatments on mortality or processing parameters. Water intake increased linearly with increasing DEB, giving higher litter moistures and lower rectal temperatures. Blood HCO3 and pH increased with the highest DEB (360 mEq/kg) causing respiratory alkalosis. The DEB of 240 mEg/kg gave best weight gain and feed conversion ratio, and ideal DEB predicted by regression analyses were 186 and 197 mEq/kg from 0 to 21 d of age and 236 and 207 mEq/kg of feed from 0 to 42 d, respectively. These DEB corresponded to estimated (interpolated) values in predicted optimal 186 to 197 mEq/kg starter of Na 0.38 to 0.40% and Cl 0.405 to 0.39% (K = 0.52%), in 207 to 236 mEq/kg starter, Na 0.409 to 0.445% and Cl 0.326 to 0.372% Cl (K = 0.52%), and in grower Na 0.41 to 0.445%, Cl 0.315 to 0.267% (K = 0.47%).