946 resultados para Diamond-like Carbon, Thin Film, Raman Spectroscpoy, Disorder
Resumo:
An optical microscopy study of stress relief patterns in diamond-like carbon films is presented. Interesting stress relief patterns are observed which include the well-known sinusoidal type, branching pattern and string-of-beads pattern. The last one is shown to relieve stresses under marginal conditions. Two new stress relief patterns are noted in the present study. One of them is of sinusoidal shape with two extra branches at every peak position. The distribution of different stress relief forms from the outer edge of the films towards the interior is markedly dependent on the film thickness. Our new patterns support the approach in which the stress relief forms have been analysed earlier using the theory of plate buckling.
Resumo:
The diamond-like carbon (DLC) films with different thicknesses on 9Crl8 bearing steels were prepared using vacuum magnetic-filtering arc plasma deposition. Vickers indentation. nanoin-dentation and nanoscratch tests were used to characterize the DLC films with a wide range of applied loads. Mechanical and tribological behaviors of these submicron films were investigated and interpreted. The hardnesses of 9Crl8 and DLC, determined by nanoindentation, are approximately 8GPa and 60GPa respectively; their elastic moduli are approximately 25OGPa and 600GPa respectively. The friction coefficients of 9Crl8, DLC. organic coating, determined by nanoscratch, are approximately 0. 35, 0. 20 and 0. 13 respectively. It is demonstrated that nanoindentation and nanoscratch tests can provide more information about the near-surface elastic-plastic deformation, friction and wear properties. The correlation of mechanical properties and scratch resistance of DLC films on 9Crl8 steels can provide an assessment for the load-carrying capacity and wear resistance