966 resultados para Control problems
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this paper we consider nonautonomous optimal control problems of infinite horizon type, whose control actions are given by L-1-functions. We verify that the value function is locally Lipschitz. The equivalence between dynamic programming inequalities and Hamilton-Jacobi-Bellman (HJB) inequalities for proximal sub (super) gradients is proven. Using this result we show that the value function is a Dini solution of the HJB equation. We obtain a verification result for the class of Dini sub-solutions of the HJB equation and also prove a minimax property of the value function with respect to the sets of Dini semi-solutions of the HJB equation. We introduce the concept of viscosity solutions of the HJB equation in infinite horizon and prove the equivalence between this and the concept of Dini solutions. In the Appendix we provide an existence theorem. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A Maximum Principle is derived for a class of optimal control problems arising in midcourse guidance, in which certain controls are represented by measures and, the state trajectories are functions of bounded variation. The optimality conditions improves on previous optimality conditions by allowing nonsmooth data, measurable time dependence, and a possibly time varying constraint set for the conventional controls.
Resumo:
A vector-valued impulsive control problem is considered whose dynamics, defined by a differential inclusion, are such that the vector fields associated with the singular term do not satisfy the so-called Frobenius condition. A concept of robust solution based on a new reparametrization procedure is adopted in order to derive necessary conditions of optimality. These conditions are obtained by taking a limit of those for an appropriate sequence of auxiliary standard optimal control problems approximating the original one. An example to illustrate the nature of the new optimality conditions is provided. © 2000 Elsevier Science B.V. All rights reserved.
Resumo:
In this paper we present a weak maximum principle for optimal control problems involving mixed constraints and pointwise set control constraints. Notably such result holds for problems with possibly nonsmooth mixed constraints. Although the setback of such result resides on a convexity assumption on the extended velocity set, we show that if the number of mixed constraints is one, such convexity assumption may be removed when an interiority assumption holds. © 2008 IEEE.
Resumo:
We consider free time optimal control problems with pointwise set control constraints u(t) ∈ U(t). Here we derive necessary conditions of optimality for those problem where the set U(t) is defined by equality and inequality control constraints. The main ingredients of our analysis are a well known time transformation and recent results on necessary conditions for mixed state-control constraints. ©2010 IEEE.
Resumo:
This work considers nonsmooth optimal control problems and provides two new sufficient conditions of optimality. The first condition involves the Lagrange multipliers while the second does not. We show that under the first new condition all processes satisfying the Pontryagin Maximum Principle (called MP-processes) are optimal. Conversely, we prove that optimal control problems in which every MP-process is optimal necessarily obey our first optimality condition. The second condition is more natural, but it is only applicable to normal problems and the converse holds just for smooth problems. Nevertheless, it is proved that for the class of normal smooth optimal control problems the two conditions are equivalent. Some examples illustrating the features of these sufficient concepts are presented. © 2012 Springer Science+Business Media New York.
Resumo:
In this article we introduce the concept of MP-pseudoinvexity for general nonlinear impulsive optimal control problems whose dynamics are specified by measure driven control equations. This is a general paradigm in that, both the absolutely continuous and singular components of the dynamics depend on both the state and the control variables. The key result consists in showing the sufficiency for optimality of the MP-pseudoinvexity. It is proved that, if this property holds, then every process satisfying the maximum principle is an optimal one. This result is obtained in the context of a proper solution concept that will be presented and discussed. © 2012 IEEE.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This thesis deals with the study of optimal control problems for the incompressible Magnetohydrodynamics (MHD) equations. Particular attention to these problems arises from several applications in science and engineering, such as fission nuclear reactors with liquid metal coolant and aluminum casting in metallurgy. In such applications it is of great interest to achieve the control on the fluid state variables through the action of the magnetic Lorentz force. In this thesis we investigate a class of boundary optimal control problems, in which the flow is controlled through the boundary conditions of the magnetic field. Due to their complexity, these problems present various challenges in the definition of an adequate solution approach, both from a theoretical and from a computational point of view. In this thesis we propose a new boundary control approach, based on lifting functions of the boundary conditions, which yields both theoretical and numerical advantages. With the introduction of lifting functions, boundary control problems can be formulated as extended distributed problems. We consider a systematic mathematical formulation of these problems in terms of the minimization of a cost functional constrained by the MHD equations. The existence of a solution to the flow equations and to the optimal control problem are shown. The Lagrange multiplier technique is used to derive an optimality system from which candidate solutions for the control problem can be obtained. In order to achieve the numerical solution of this system, a finite element approximation is considered for the discretization together with an appropriate gradient-type algorithm. A finite element object-oriented library has been developed to obtain a parallel and multigrid computational implementation of the optimality system based on a multiphysics approach. Numerical results of two- and three-dimensional computations show that a possible minimum for the control problem can be computed in a robust and accurate manner.
Resumo:
We investigate a class of optimal control problems that exhibit constant exogenously given delays in the control in the equation of motion of the differential states. Therefore, we formulate an exemplary optimal control problem with one stock and one control variable and review some analytic properties of an optimal solution. However, analytical considerations are quite limited in case of delayed optimal control problems. In order to overcome these limits, we reformulate the problem and apply direct numerical methods to calculate approximate solutions that give a better understanding of this class of optimization problems. In particular, we present two possibilities to reformulate the delayed optimal control problem into an instantaneous optimal control problem and show how these can be solved numerically with a stateof- the-art direct method by applying Bock’s direct multiple shooting algorithm. We further demonstrate the strength of our approach by two economic examples.