971 resultados para Contrasting Cultivars
Resumo:
The objectives of this study were to determine low-P tolerance mechanisms in contrasting wheat genotypes and to evaluate the association of these mechanisms to differential gene expression. Wheat seedlings of cultivars Toropi (tolerant to low-P availability) and Anahuac (sensitive) were evaluated. Seedlings were hydroponically grown in the absence or presence of P (1.0 mmol L-1) during three different time periods: 24, 120 and 240 hours. Free phosphate (Pi) and total P contents were measured in shoots and roots. The experiment's design was in randomized blocks with three replicates, each formed by ten plants. The relative expression of genes encoding the malate transporter TaALMT1 and the transcription factor PTF1 was evaluated. Phosphorus starvation beyond ten days increased the expression of TaALMT1 only in 'Toropi'. PTF1's expression was early induced in both genotypes under P starvation, but remained significant after ten days only in 'Toropi'. Shoot Pi concentration in 'Toropi' was independent from P availability; under starvation, 'Toropi' favored the maintenance of shoot Pi concentration. The low-P tolerance of Toropi cultivar at initial growth stages is mainly due to its ability to maintain constant the Pi shoot level.
Resumo:
En 2011, cinq (5) cultivars de saules ont été sélectionnés pour leur rendement en biomasse. Ils ont été plantés sur quatre sites de la province du Québec et ont été maintenus selon le protocole de la culture intensive sur courtes rotations (CICR) afin de déterminer leur potentiel pour la bioénergie dans des environnements contrastés. La composition et l’anatomie du bois de ces cultivars ont été caractérisées et comparés en fonction des conditions environnementales caractéristiques de chaque site. La hauteur et le diamètre à la base des plantes diffèrent selon les sites. Ainsi, les cultivars répondent de façon spécifique aux conditions pédoclimatiques dans lesquelles ils sont cultivés. L’effet de l’environnement n’a pas été mis en évidence sur la teneur en lignine des cultivars. Cependant, un effet génotypique a pu être constaté soulignant l’importance de la sélectivité des cultivars. La densité du bois a étonnamment conservé la même hiérarchie génotypique entre les sites. À l’opposé, l’anatomie du bois présente des différences notamment au niveau des caractéristiques des fibres et des vaisseaux. Une forte teneur en polyphénols ainsi que des fibres moins larges et des vaisseaux plus nombreux ont été observés sur le site dont le bois est le plus dense supposant l’effet probable d’un stress abiotique. De plus, deux fois plus de fibres gélatineuses, fibres riches en cellulose, ont été identifiées sur ce site montrant un intérêt pour la production de bioéthanol.
Resumo:
Background and aim Concentrations of essential minerals in plant foods may have declined in modern high-yielding cultivars grown with large applications of nitrogen fertilizer (N). We investigated the effect of dwarfing alleles and N rate on mineral concentrations in wheat. Methods Gibberellin (GA)-insensitive reduced height (Rht) alleles were compared in near isogenic wheat lines. Two field experiments comprised factorial combinations of wheat variety backgrounds, alleles at the Rht-B1 locus (rht-B1a, Rht-B1b, Rht-B1c), and different N rates. A glasshouse experiment also included Rht-D1b and Rht-B1b+D1b in one background. Results In the field, depending on season, Rht-B1b increased crop biomass, dry matter (DM) harvest index, grain yield, and the economically-optimal N rate (Nopt). Rht-B1b did not increase uptake of Cu, Fe, Mg or Zn so these minerals were diluted in grain. Nitrogen increased DM yield and mineral uptake so grain concentrations were increased (Fe in both seasons; Cu, Mg and Zn in one season). Rht-B1b reduced mineral concentrations at Nopt in the most N responsive season. In the glasshouse experiment, grain yield was reduced, and mineral concentrations increased, with Rht allele addition. Conclusion Effects of Rht alleles on Fe, Zn, Cu and Mg concentrations in wheat grain are mostly due to their effects on DM, rather than of GA-insensitivity on Nopt or mineral uptake. Increased N requirement in semi-dwarf varieties partly offsets this dilution effect.
Resumo:
Canopy characteristics (leaf area index, fractional light interception, extinction coefficient) of mature trees of ten clonally propagated cacao cultivars were measured over a period of 14 months at an experimental site in Bahia, Brazil. Differences in leaf area index between clones became more pronounced over time. When an approximately constant leaf area index was reached (after about nine months), LAI varied between clones from 2.8 to 4.5. Clonal differences in the relationship between leaf area index and fractional light interception implied differences in canopy architecture, as reflected by the range of extinction coefficients (mean values ranged from 0.63 for the clone TSH-565 to 0.82 for CC-10). The results demonstrate the potential for breeding more photosynthetically efficient cacao canopies.
Resumo:
Climate change is increasing night temperature (NT) more than day temperature (DT) in rice-growing areas. Effects of combinations of NT (24-35°C) from microsporogenesis to anthesis at one or more DT (30 or 35°C) at anthesis on rice spikelet fertility, temperature within spikelets, flowering pattern, grain weight per panicle, amylose content and gel consistency were investigated in contrasting rice cultivars under controlled environments. Cultivars differed in spikelet fertility response to high NT, with higher fertility associated with cooler spikelets (P < 0.01). Flowering dynamics were altered by high NT and a novel high temperature tolerance complementary mechanism, shorter flower open duration in cv. N22, was identified. High NT reduced spikelet fertility, grain weight per panicle, amylose content and gel consistency, whereas high DT reduced only gel consistency. Night temperature >27°C was estimated to reduce grain weight. Generally, high NT was more damaging to grain weight and selected grain quality traits than high DT, with little or no interaction between them. The critical tolerance and escape traits identified, i.e. spikelet cooling, relatively high spikelet fertility, earlier start and peak time of anthesis and shorter spikelet anthesis duration can aid plant breeding programs targeting resilience in warmer climates.
Resumo:
Background and Aims: Phosphate (Pi) is one of the most limiting nutrients for agricultural production in Brazilian soils due to low soil Pi concentrations and rapid fixation of fertilizer Pi by adsorption to oxidic minerals and/or precipitation by iron and aluminum ions. The objectives of this study were to quantify phosphorus (P) uptake and use efficiency in cultivars of the species Coffea arabica L. and Coffea canephora L., and group them in terms of efficiency and response to Pi availability. Methods: Plants of 21 cultivars of C. arabica and four cultivars of C. canephora were grown under contrasting soil Pi availabilities. Biomass accumulation, tissue P concentration and accumulation and efficiency indices for P use were measured. Key Results: Coffee plant growth was significantly reduced under low Pi availability, and P concentration was higher in cultivars of C. canephora. The young leaves accumulated more P than any other tissue. The cultivars of C. canephora had a higher root/shoot ratio and were significantly more efficient in P uptake, while the cultivars of C. arabica were more efficient in P utilization. Agronomic P use efficiency varied among coffee cultivars and E16 Shoa, E22 Sidamo, Iêmen and Acaiá cultivars were classified as the most efficient and responsive to Pi supply. A positive correlation between P uptake efficiency and root to shoot ratio was observed across all cultivars at low Pi supply. These data identify Coffea genotypes better adapted to low soil Pi availabilities, and the traits that contribute to improved P uptake and use efficiency. These data could be used to select current genotypes with improved P uptake or utilization efficiencies for use on soils with low Pi availability and also provide potential breeding material and targets for breeding new cultivars better adapted to the low Pi status of Brazilian soils. This could ultimately reduce the use of Pi fertilizers in tropical soils, and contribute to more sustainable coffee production.
Resumo:
Amphibians have been declining worldwide and the comprehension of the threats that they face could be improved by using mark-recapture models to estimate vital rates of natural populations. Recently, the consequences of marking amphibians have been under discussion and the effects of toe clipping on survival are debatable, although it is still the most common technique for individually identifying amphibians. The passive integrated transponder (PIT tag) is an alternative technique, but comparisons among marking techniques in free-ranging populations are still lacking. We compared these two marking techniques using mark-recapture models to estimate apparent survival and recapture probability of a neotropical population of the blacksmith tree frog, Hypsiboas faber. We tested the effects of marking technique and number of toe pads removed while controlling for sex. Survival was similar among groups, although slightly decreased from individuals with one toe pad removed, to individuals with two and three toe pads removed, and finally to PIT-tagged individuals. No sex differences were detected. Recapture probability slightly increased with the number of toe pads removed and was the lowest for PIT-tagged individuals. Sex was an important predictor for recapture probability, with males being nearly five times more likely to be recaptured. Potential negative effects of both techniques may include reduced locomotion and high stress levels. We recommend the use of covariates in models to better understand the effects of marking techniques on frogs. Accounting for the effect of the technique on the results should be considered, because most techniques may reduce survival. Based on our results, but also on logistical and cost issues associated with PIT tagging, we suggest the use of toe clipping with anurans like the blacksmith tree frog.
Resumo:
Human land use tends to decrease the diversity of native plant species and facilitate the invasion and establishment of exotic ones. Such changes in land use and plant community composition usually have negative impacts on the assemblages of native herbivorous insects. Highly specialized herbivores are expected to be especially sensitive to land use intensification and the presence of exotic plant species because they are neither capable of consuming alternative plant species of the native flora nor exotic plant species. Therefore, higher levels of land use intensity might reduce the proportion of highly specialized herbivores, which ultimately would lead to changes in the specialization of interactions in plant-herbivore networks. This study investigates the community-wide effects of land use intensity on the degree of specialization of 72 plant-herbivore networks, including effects mediated by the increase in the proportion of exotic plant species. Contrary to our expectation, the net effect of land use intensity on network specialization was positive. However, this positive effect of land use intensity was partially canceled by an opposite effect of the proportion of exotic plant species on network specialization. When we analyzed networks composed exclusively of endophagous herbivores separately from those composed exclusively of exophagous herbivores, we found that only endophages showed a consistent change in network specialization at higher land use levels. Altogether, these results indicate that land use intensity is an important ecological driver of network specialization, by way of reducing the local host range of herbivore guilds with highly specialized feeding habits. However, because the effect of land use intensity is offset by an opposite effect owing to the proportion of exotic host species, the net effect of land use in a given herbivore assemblage will likely depend on the extent of the replacement of native host species with exotic ones.
Resumo:
Different storage conditions can induce changes in the colour and carotenoid profiles and levels in some fruits. The goal of this work was to evaluate the influence of low temperature storage on the colour and carotenoid synthesis in two banana cultivars: Prata and Nanicão. For this purpose, the carotenoids from the banana pulp were determined by HPLC-DAD-MS/MS, and the colour of the banana skin was determined by a colorimeter method. Ten carotenoids were identified, of which the major carotenoids were all-trans-lutein, all-trans-α-carotene and all-trans-β-carotene in both cultivars. The effect of the low temperatures was subjected to linear regression analysis. In cv. Prata, all-trans-α-carotene and all-trans-β-carotene were significantly affected by low temperature (p<0.01), with negative estimated values (β coefficients) indicating that during cold storage conditions, the concentrations of these carotenoids tended to decrease. In cv. Nanicão, no carotenoid was significantly affected by cold storage (p>0.05). The accumulation of carotenoids in this group may be because the metabolic pathways using these carotenoids were affected by storage at low temperatures. The colour of the fruits was not negatively affected by the low temperatures (p>0.05).
Mineral Nutrition Of Campos Rupestres Plant Species On Contrasting Nutrient-impoverished Soil Types.
Resumo:
In Brazil, the campos rupestres occur over the Brazilian shield, and are characterized by acidic nutrient-impoverished soils, which are particularly low in phosphorus (P). Despite recognition of the campos rupestres as a global biodiversity hotspot, little is known about the diversity of P-acquisition strategies and other aspects of plant mineral nutrition in this region. To explore nutrient-acquisition strategies and assess aspects of plant P nutrition, we measured leaf P and nitrogen (N) concentrations, characterized root morphology and determined the percentage arbuscular mycorrhizal (AM) colonization of 50 dominant species in six communities, representing a gradient of soil P availability. Leaf manganese (Mn) concentration was measured as a proxy for carboxylate-releasing strategies. Communities on the most P-impoverished soils had the highest proportion of nonmycorrhizal (NM) species, the lowest percentage of mycorrhizal colonization, and the greatest diversity of root specializations. The large spectrum of leaf P concentration and variation in root morphologies show high functional diversity for nutritional strategies. Higher leaf Mn concentrations were observed in NM compared with AM species, indicating that carboxylate-releasing P-mobilizing strategies are likely to be present in NM species. The soils of the campos rupestres are similar to the most P-impoverished soils in the world. The prevalence of NM strategies indicates a strong global functional convergence in plant mineral nutrition strategies among severely P-impoverished ecosystems.
Resumo:
Low temperatures negatively impact the metabolism of orange trees, and the extent of damage can be influenced by the rootstock. We evaluated the effects of low nocturnal temperatures on Valencia orange scions grafted on Rangpur lime or Swingle citrumelo rootstocks. We exposed six-month-old plants to night temperatures of 20ºC and 8ºC under controlled conditions. After decreasing the temperature to 8ºC, there were decreases in leaf CO2 assimilation, stomatal conductance, mesophyll conductance and CO2 concentration in the chloroplasts, in plant hydraulic conductivity and in the maximum electron transport rate driven ribulose-1,5-bisphosphate (RuBP) regeneration in plants grafted on both rootstocks. However, the effects of low night temperature were more severe in plants grafted on Rangpur rootstock, which also presented reduction in the maximum rate of RuBP carboxylation and in the maximum quantum efficiency of the PSII. In general, irreversible damage due to night chilling was found in the photosynthetic apparatus of plants grafted on Rangpur lime. Low night temperatures induced similar changes in the antioxidant metabolism, preventing oxidative damage in citrus leaves on both rootstocks. As photosynthesis is linked to plant growth, our findings indicate that the rootstock may improve the performance of citrus trees in environments with low night temperatures, with Swingle rootstock improving the photosynthetic acclimation in leaves of orange plants.
Resumo:
The aim of this study was to determine the short-term environmental changes caused by the simultaneous passage of a high energy event on two sandy beaches with different morphodynamic states and their influence on the richness, abundance and distribution of the benthic macrofauna. Two microtidal exposed sandy beaches with contrasting morphodynamics were simultaneously sampled before, during and after the passage of two cold fronts in Santa Catarina. The reflective beach showed a higher susceptibility to the increase in wave energy produced by the passage of cold fronts and was characterized by rapid and intense erosive processes in addition to a capacity for rapid restoration of the beach profile. As regards the dissipative beach, erosive processes operated more slowly and progressively, and it was characterized further by a reduced capacity for the recovery of its sub-aerial profile. Although the intensity of the environmental changes was distinct as between the morphodynamic extremes, changes in the composition, richness and abundance of macrobenthos induced by cold fronts were not evident for either of the beaches studied. On the other hand, alterations in the distribution pattern of the macrofauna were observed on the two beaches and were related to variations in sea level, position of the swash zone and moisture gradient, suggesting that short-term accommodations in the spatial structure of the macrobenthos occur in response to changes in environmental conditions in accordance with the temporal dynamics characteristic of each morphodynamic state.
Resumo:
The objective of this study was to evaluate the nutritional traits and in vitro digestibility of silages from different corn cultivars harvested at two cutting heights. It was evaluated 11 cultivars (Dina 766, Dina 657, Dina 1000, P 3021, P 3041, C 805, C 333, AG 5011, FO 01, Dina co 9621 and BR 205) harvest 5 cm above ground (low) and 5 cm below the intersection of the first ear (high). It was used a random block design (three blocks), arranged in a 11 × 2 factorial scheme. Silages from plants harvested at high cutting height presented average content of dry matter significantly superior to silages from plants harvested at low height. Cultivars FO 01, AG 5011, Dina co 9621 and Dina 766 presented greater content of crude protein than cultivars C 805, P 3041 and P 3021, which presented the lowest contents of this nutrient. The raise in the cut height increased in vitro dry matter true digestibility coefficients and in vitro dry matter digestibility of silage evaluated. The increase in cut height improved nutritive value of silages by decreasing concentrations of fibrous fractions and increasing in vitro dry matter digestibility.
Resumo:
The objective of this study was to evaluate the agronomic characteristics, bromatological-chemical composition and digestibility of 11 corn cultivars (Zea mays) harvested at two cutting heights. Cultivars D 766, D 657, D 1000, P 3021, P 3041, C 805, C 333, AG 5011, FO 01, CO 9621 and BR 205 were evaluated when they were harvested 5 cm above ground (low) and 5 cm below the insertion of the first ear (high). The experiment was designed as random blocks, with three replicates, arranged in an 11 x 2 factorial scheme. Cultivars presented similar productions of forage dry matter and grains. Percentages of stalk, leaf, straw, cob and kernel fractions were different among cultivars, as well as dry matter content of the whole plant at harvest. Considering the whole plant, only the contents of gross energy, nitrogen in neutral detergent fiber, and in vitro neutral and acid detergent fiber digestibility did not differ among cultivars. Increase on the cutting height improved forage quality due to the reduction of stalk and leaf fractions and contents of cell wall constituents.
Resumo:
Nowadays, rice is among the most preferred crops for rotation with soybean and cotton in the large producing areas of Central Brazil. Nevertheless, the host status of the Brazilian upland rice cultivars for Meloidogyne incognita race 4 and Rotylenchulus reniformis has not been investigated and remains unknown. This study dealt with the assessment of the host response of some selected Brazilian upland rice cultivars to these nematodes under glasshouse conditions. The host status for each tested interaction was based on the nematode reproduction factor (RF) and number of nematodes (g root)(-1). Two experiments with M. incognita race 4, referred to as trial I (initial population (IP) = 4000) and trial 2 (IP = 800), included, respectively, 14 cultivars (cvs AN Cirad 141, BRS Monarca, BRS Primavera, AN Cambara, BRS Pepita, BRS Curinga, BRS Sertaneja, IAPAR 9, IAPAR 62, IAPAR 63, IAPAR 64, IAPAR 117, IAC 201, IAC 202) and 19 cultivars (the same ones in Experiment 1 plus cvs BRS Maravilha, BRS Talento, BRS Bonanca, Ricetec Ecco, BRS Soberana). Except for cv. BRS Pepita, rated as resistant, the cultivars were rated as susceptible or moderately susceptible (RF means ranged from 1.09 to 12.56). In a third experiment with R. reniformis (IP = 1800) that included the same cultivars as in Experiment I, all cultivars were rated as resistant (RF means ranged from 0.01 to 0.29).