985 resultados para Commutative Jordan Algebras
Resumo:
This thesis is dedicated to the Tits-Kantor-Koecher (TKK) construction which establishes a bijective correspondence between unital Jordan algebras and shortly graded Lie algebras with Z-grading induced by an sl_2-triple. It is based on the observation that if g is a Lie algebra with a short Z-grading and f lies in g_1, then the formula ab=[[a,f],b] defines a structure of a Jordan algebra on g_{-1}. The TKK construction has been extended to Jordan triple systems and, more recently, to the so-called Kantor triple systems. These generalizations are studied in the thesis.
Resumo:
The first part of this paper provides a comprehensive and self-contained account of the interrelationships between algebraic properties of varieties and properties of their free algebras and equational consequence relations. In particular, proofs are given of known equivalences between the amalgamation property and the Robinson property, the congruence extension property and the extension property, and the flat amalgamation property and the deductive interpolation property, as well as various dependencies between these properties. These relationships are then exploited in the second part of the paper in order to provide new proofs of amalgamation and deductive interpolation for the varieties of lattice-ordered abelian groups and MV-algebras, and to determine important subvarieties of residuated lattices where these properties hold or fail. In particular, a full description is given of all subvarieties of commutative GMV-algebras possessing the amalgamation property.
Resumo:
In this thesis we introduce nuclear dimension and compare it with a stronger form of the completely positive approximation property. We show that the approximations forming this stronger characterisation of the completely positive approximation property witness finite nuclear dimension if and only if the underlying C*-algebra is approximately finite dimensional. We also extend this result to nuclear dimension at most omega. We review interactions between separably acting injective von Neumann algebras and separable nuclear C*-algebras. In particular, we discuss aspects of Connes' work and how some of his strategies have been used by C^*-algebraist to estimate the nuclear dimension of certain classes of C*-algebras. We introduce a notion of coloured isomorphisms between separable unital C*-algebras. Under these coloured isomorphisms ideal lattices, trace spaces, commutativity, nuclearity, finite nuclear dimension and weakly pure infiniteness are preserved. We show that these coloured isomorphisms induce isomorphisms on the classes of finite dimensional and commutative C*-algebras. We prove that any pair of Kirchberg algebras are 2-coloured isomorphic and any pair of separable, simple, unital, finite, nuclear and Z-stable C*-algebras with unique trace which satisfy the UCT are also 2-coloured isomorphic.
Resumo:
Following the seminal work of Zhuang, connected Hopf algebras of finite GK-dimension over algebraically closed fields of characteristic zero have been the subject of several recent papers. This thesis is concerned with continuing this line of research and promoting connected Hopf algebras as a natural, intricate and interesting class of algebras. We begin by discussing the theory of connected Hopf algebras which are either commutative or cocommutative, and then proceed to review the modern theory of arbitrary connected Hopf algebras of finite GK-dimension initiated by Zhuang. We next focus on the (left) coideal subalgebras of connected Hopf algebras of finite GK-dimension. They are shown to be deformations of commutative polynomial algebras. A number of homological properties follow immediately from this fact. Further properties are described, examples are considered and invariants are constructed. A connected Hopf algebra is said to be "primitively thick" if the difference between its GK-dimension and the vector-space dimension of its primitive space is precisely one . Building on the results of Wang, Zhang and Zhuang,, we describe a method of constructing such a Hopf algebra, and as a result obtain a host of new examples of such objects. Moreover, we prove that such a Hopf algebra can never be isomorphic to the enveloping algebra of a semisimple Lie algebra, nor can a semisimple Lie algebra appear as its primitive space. It has been asked in the literature whether connected Hopf algebras of finite GK-dimension are always isomorphic as algebras to enveloping algebras of Lie algebras. We provide a negative answer to this question by constructing a counterexample of GK-dimension 5. Substantial progress was made in determining the order of the antipode of a finite dimensional pointed Hopf algebra by Taft and Wilson in the 1970s. Our final main result is to show that the proof of their result can be generalised to give an analogous result for arbitrary pointed Hopf algebras.
Resumo:
Dissertação apresentada para obtenção do Grau de Doutor em Matemática, Estatística, pela Universidade Nova de Lisboa, faculdade de Ciências e Tecnologia
Resumo:
Arnold [V.I. Arnold, On matrices depending on parameters, Russian Math. Surveys 26 (2) (1971) 29-43] constructed miniversal deformations of square complex matrices under similarity; that is, a simple normal form to which not only a given square matrix A but all matrices B close to it can be reduced by similarity transformations that smoothly depend on the entries of B. We construct miniversal deformations of matrices under congruence. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
We prove that the prime radical rad M of the free Malcev algebra M of rank more than two over a field of characteristic not equal 2 coincides with the set of all universally Engelian elements of M. Moreover, let T(M) be the ideal of M consisting of all stable identities of the split simple 7-dimensional Malcev algebra M over F. It is proved that rad M = J(M) boolean AND T(M), where J(M) is the Jacobian ideal of M. Similar results were proved by I. Shestakov and E. Zelmanov for free alternative and free Jordan algebras.
Resumo:
We investigate the structure of commutative non-associative algebras satisfying the identity x(x(xy)) = 0. Recently, Correa and Hentzel proved that every commutative algebra satisfying above identity over a field of characteristic not equal 2 is solvable. We prove that every commutative finite-dimensional algebra u over a field F of characteristic not equal 2, 3 which satisfies the identity x(x(xy)) = 0 is nilpotent. Furthermore, we obtain new identities and properties for this class of algebras.
Resumo:
We describe bases of free commutative Moufang loop with seven generators and calculate the order of this loop. (c) 2011 Published by Elsevier Inc.
Resumo:
We describe (braided-) commutative algebras with non-degenerate multiplicative form in certain braided monoidal categories, corresponding to abelian metric Lie algebras (so-called Drinfeld categories). We also describe local modules over these algebras and classify commutative algebras with a finite number of simple local modules.
Resumo:
We extend the Jacobson's Coordinatization theorem to Jordan superalgebras. Using it we classify Jordan bimodules over superalgebras of types Q(n) and JP(n), n >= 3. Then we use the Tits-Kantor-Koecher construction and representation theory of Lie superalgebras to treat the remaining case Q(2).
Resumo:
Let A be a semiprime 2 and 3-torsion free non-commutative associative algebra. We show that the Lie algebra Der(A) of(associative) derivations of A is strongly non-degenerate, which is a strong form of semiprimeness for Lie algebras, under some additional restrictions on the center of A. This result follows from a description of the quadratic annihilator of a general Lie algebra inside appropriate Lie overalgebras. Similar results are obtained for an associative algebra A with involution and the Lie algebra SDer(A) of involution preserving derivations of A
Resumo:
We give sufficient conditions for homotopical localization functors to preserve algebras over coloured operads in monoidal model categories. Our approach encompasses a number of previous results about preservation of structures under localizations, such as loop spaces or infinite loop spaces, and provides new results of the same kind. For instance, under suitable assumptions, homotopical localizations preserve ring spectra (in the strict sense, not only up to homotopy), modules over ring spectra, and algebras over commutative ring spectra, as well as ring maps, module maps, and algebra maps. It is principally the treatment of module spectra and their maps that led us to the use of coloured operads (also called enriched multicategories) in this context.
Resumo:
Let I be an ideal in a local Cohen-Macaulay ring (A, m). Assume I to be generically a complete intersection of positive height. We compute the depth of the Rees algebra and the form ring of I when the analytic deviation of I equals one and its reduction number is also at most one. The formu- las we obtain coincide with the already known formulas for almost complete intersection ideals.