988 resultados para Cell Lineage
Resumo:
A sequence of epithelial cell proliferation, allocation to four principal lineages, migration-associated differentiation, and cell loss occurs along the crypt-villus axis of the mouse intestine. The sequence is completed in a few days and is recapitulated throughout the life-span of the animal. We have used an intestine-specific fatty acid binding protein gene, Fabpi, as a model for studying regulation of gene expression in this unique developmental system. Promoter mapping studies in transgenic mice identified a 20-bp cis-acting element (5'-AGGTGGAAGCCATCACACTT-3') that binds small intestinal nuclear proteins and participates in the control of Fabpi's cephalocaudal, differentiation-dependent, and cell lineage-specific patterns of expression. Immunocytochemical studies using confocal and electron microscopy indicate that it does so by acting as a suppressor of gene expression in the distal small intestine/colon, as a suppressor of gene activation in proliferating and nonproliferating cells located in the crypts of Lieberkühn, and as a suppressor of expression in the growth factor and defensin-producing Paneth cell lineage. The 20-bp domain has no obvious sequence similarities to known transcription factor binding sites. The three functions modulated by this compact element represent the types of functions required to establish and maintain the intestine's remarkably complex spatial patterns of gene expression. The transgenes described in this report also appear to be useful in characterizing the crypt's stem cell hierarchy.
Resumo:
Despite the importance of peritubular myoid (PM) cells in the histogenesis of the fetal testis, understanding the origin and function of these cells has been hampered by the lack of suitable markers. The current study was aimed at identifying molecular markers for PM cells during the early stages of testis development in the mouse embryo. Expression of candidate marker genes was tested by section in situ hybridisation, in some instances followed by immunofluorescent detection of protein products. Collagen type-1, inhibin beta A, caldesmon 1 and tropomyosin 1 were found to be expressed by early-stage PM cells. These markers were also expressed in subsets of interstitial cells, most likely reflecting their common embryological provenance from migrating mesonephric cells. Although not strictly specific for PM cells, these markers are likely to be useful in studying the biology of early PM cells in the fetal testis.
Resumo:
Commitment of the alpha beta and gamma delta T cell lineages within the thymus has been studied in T cell receptor (TCR)-transgenic and TCR mutant murine strains. TCR gamma delta-transgenic or TCR beta knockout mice, both of which are unable to generate TCR alpha beta-positive T cells, develop phenotypically alpha beta-like thymocytes in significant proportions. We provide evidence that in the absence of functional TCR beta protein, the gamma delta TCR can promote the development of alpha beta-like thymocytes, which, however, do not expand significantly and do not mature into gamma delta T cells. These results show that commitment to the alpha beta lineage can be determined independently of the isotype of the TCR, and suggest that alpha beta versus gamma delta T cell lineage commitment is principally regulated by mechanisms distinct from TCR-mediated selection. To accommodate our data and those reported previously on the effect of TCR gamma and delta gene rearrangements on alpha beta T cell development, we propose a model in which lineage commitment occurs independently of TCR gene rearrangement.
Resumo:
The development of T cells from pluripotent stem cells involves a coordinated series of lineage-commitment steps. Common lymphoid precursors in the fetal liver or adult bone marrow must first choose between a T, B or NK cell fate. Committed T cell precursors in the thymus then differentiate into cells committed to the alphabeta or gammadelta lineages. Recent advances have been made in our understanding of the mechanisms underlying T cell fate specification and alphabeta/gammadelta lineage divergence.
Resumo:
T cells belong to two mutually exclusive lineages expressing either alpha beta or gamma delta T-cell receptors (TCR). Although alpha beta and gamma delta cells are known to share a common precursor the role of TCR rearrangement and specificity in the lineage commitment process is controversial. Instructive lineage commitment models endow the alpha beta or gamma delta TCR with a deterministic role in lineage choice, whereas separate lineage models invoke TCR-independent lineage commitment followed by TCR-dependent selection and maturation of alpha beta and gamma delta cells. Here we review the published data pertaining to the role of the TCR in alpha beta/gamma delta lineage commitment and provide some additional information obtained from recent intracellular TCR staining studies. We conclude that a variant of the separate lineage model is best able to accommodate all of the available experimental results.
Resumo:
P>We report a case of T-cell prolymphocytic leukemia (T-PLL) in a 41-year-old male. Classical cytogenetic, spectral karyotyping (SKY) and fluorescence in situ hybridization (FISH) studies of a blood sample obtained at diagnosis revealed the co-existence of t(X;14)(q28;q11), t(Y;14)(q12;q11) and a ring chromosome derivated from i(8)(q10). Immunophenotypic studies revealed involvement of T-cell lineage, with proliferation of CD4(-) CD8(+). The co-existence of two translocations involving both sex chromosomes in a case of T-PLL is rare. Chromosomal instability associated with the disease progression may have allowed the emergence of cell clones with translocations involving the sex chromosomes and the ring chromosome observed.
Resumo:
Studies on purified blood dendritic cells (DCs) are hampered by poor viability in tissue culture. We, therefore, attempted to study some of the interactions/relationships between DCs and other blood cells by culturing unseparated peripheral blood mononuclear cell (PBMC) preparations in vitro. Flow cytometric techniques were used to undertake a phenotypic and functional analysis of DCs within the cultured PBMC population. We discovered that both the CD11c(+) and CD11c(-) CD123(hi) DC subsets maintained their viability throughout the 3-day culture period, without the addition of exogenous cytokines. This viability was accompanied by progressive up-regulation of the surface costimulatory (CD40, CD80, CD86) and activation (CMRF-44, CMRF-56, CD83) molecules. The survival and apparent production of DCs in PBMC culture (without exogenous cytokines) and that of sorted DCs (with cytokines) were evaluated and compared by using TruCOUNT analysis. Absolute DC counts increased (for CD123hi and CD11c+ subsets) after overnight culture of PBMCs. Single-cell lineage depletion experiments demonstrated the rapid and spontaneous emergence of new in vitro generated DCs from CD14(+)/CD16(+) PBMC radioresistant precursors, additional to the preexisting ex vivo DC population. Unlike monocyte-derived DCs, blood DCs increased dextran uptake with culture and activation. Finally, DCs obtained after culture of PBMCs for 3 days were as effective as freshly isolated DCs in stimulating an allogeneic mixed leukocyte reaction. (C) 2002 by The American Society of Hematology.
Resumo:
Leishmanias can be produced by inoculation in conditioned McCoy cell culture growth medium (CGM). Leishmania (Leishmania) infantum chagasi (100 parasites) grown in NNN medium was inoculated in 2.5 mL CGM, kept in plates (24 wells) and its multiplication was observed for five days (120 hours). After day 5, the medium was saturated with the flagellate forms of the parasite (promastigotes). The reproduction of the leishmanias was observed every 24 hours and the number of parasites was calculated by counting the parasites in a drop of 10 µ L and photomicrographied. So the number of Leishmanias was adjusted to 1 mL volume. The advantage of the technique by isolation of Leishmania in CGM demonstrated in this study is its low cost and high efficacy even with a small quantity of parasites (10² promastigotes) used as inoculum. Additionally, isolation of the leishmania can be obtained together with an increase in their density (180 times) as observed by growth kinetics, within a shorter time. These results justify the use of this low-cost technique for the isolation and investigation of the behavior and multiplication of Leishmania both in vertebrates and invertebrates, besides offering means of obtaining antigens, whether whole antigens (leishmanias) or the soluble antigens produced by the parasites which may be useful for the production of new diagnostic kits.
Resumo:
The kinetics of growth of Leishmania performed in vitro after internalization of the promastigote form in the cell and the occurrence of the transformation of the parasite into the amastigote form have been described by several authors. They used explants of macrophages in hamster spleen cell culture or in a human macrophage lineage cell, the U937. Using microscopy, the description of morphologic inter-relationship and the analysis of the production of specific molecules, it has been possible to define some of the peculiarities of the biology of the parasite. The present study shows the growth cycle of Leishmania chagasi during the observation of kinetic analysis undertaken with a McCoy cell lineage that lasted for a period of 144 hours. During the process, the morphologic transformation was revealed by indirect immunofluorescence (IF) and the molecules liberated in the extra cellular medium were observed by SDS-PAGE at 24-hour intervals during the whole 144-hour period. It was observed that in the first 72 hours the promastigote form of L. chagasi adhered to the cell membranes and assumed a rounded (amastigote-like) form. At 96 hours the infected cells showed morphologic alterations; at 120 hours the cells had liberated soluble fluorescent antigens into the extra cellular medium. At 144 hours, new elongated forms of the parasites, similar to promastigotes, were observed. In the SDS-PAGE, specific molecular weight proteins were observed at each point of the kinetic analysis showing that the McCoy cell imitates the macrophage and may be considered a useful model for the study of the infection of the Leishmania/cell binomial.
Resumo:
Notch proteins influence cell-fate decisions in many developmental systems. Gain-of-function studies have suggested a crucial role for Notch1 signaling at several stages during lymphocyte development, including the B/T, alphabeta/gammadelta and CD4/CD8 lineage choices. Here, we critically re-evaluate these conclusions in the light of recent studies that describe inducible and tissue-specific targeting of the Notch1 gene.
Resumo:
BACKGROUND: CD19 is a B cell lineage specific surface receptor whose broad expression, from pro-B cells to early plasma cells, makes it an attractive target for the immunotherapy of B cell malignancies. In this study we present the generation of a novel humanized anti-CD19 monoclonal antibody (mAb), GBR 401, and investigate its therapeutic potential on human B cell malignancies. METHODS: GBR 401 was partially defucosylated in order to enhance its cytotoxic function. We analyzed the in vitro depleting effects of GBR 401 against B cell lines and primary malignant B cells from patients in the presence or in absence of purified NK cells isolated from healthy donors. In vivo, the antibody dependent cellular cytotoxicity (ADCC) efficacy of GBR 401 was assessed in a B cell depletion model consisting of SCID mice injected with healthy human donor PBMC, and a malignant B cell depletion model where SCID mice are xenografted with both primary human B-CLL tumors and heterologous human NK cells. Furthermore, the anti-tumor activity of GBR 401 was also evaluated in a xenochimeric mouse model of human Burkitt lymphoma using mice xenografted intravenously with Raji cells. Pharmacological inhibition tests were used to characterize the mechanism of the cell death induced by GBR 401. RESULTS: GBR 401 exerts a potent in vitro and in vivo cytotoxic activity against primary samples from patients representing various B-cell malignancies. GBR 401 elicits a markedly higher level of ADCC on primary malignant B cells when compared to fucosylated similar mAb and to Rituximab, the current anti-CD20 mAb standard immunotherapeutic treatment for B cell malignancies, showing killing at 500 times lower concentrations. Of interest, GBR 401 also exhibits a potent direct killing effect in different malignant B cell lines that involves homotypic aggregation mediated by actin relocalization. CONCLUSION: These results contribute to consolidate clinical interest in developing GBR 401 for treatment of hematopoietic B cell malignancies, particularly for patients refractory to anti-CD20 mAb therapies.
Resumo:
The Notch family of evolutionarily conserved proteins regulates a broad spectrum of cell-fate decisions and differentiation processes during fetal and post-natal development. The best characterized role of Notch signaling during mammalian hematopoiesis and lymphopoiesis is the essential function of the Notch1 receptor in T-cell lineage commitment. More recent studies have addressed the roles of other Notch receptors and ligands, as well as their downstream targets, revealing additional novel functions of Notch signaling in intra-thymic T-cell development, B-cell development and peripheral T-cell function.
Resumo:
Notch proteins are cell surface receptors that mediate developmental cell specification events. To explore the function of murine Notch1, an essential portion of the gene was flanked with loxP sites and inactivation induced via interferon-regulated Cre recombinase. Mice with a neonatally induced loss of Notch1 function were transiently growth retarded and had a severe deficiency in thymocyte development. Competitive repopulation of lethally irradiated wild-type hosts with wild-type- and Notch1-deficient bone marrow revealed a cell autonomous blockage in T cell development at an early stage, before expression of T cell lineage markers. Notch1-deficient bone marrow did, however, contribute normally to all other hematopoietic lineages. These findings suggest that Notch1 plays an obligatory and selective role in T cell lineage induction.
Generation of cell polarity in plants links endocytosis, auxin distribution and cell fate decisions.
Resumo:
Dynamically polarized membrane proteins define different cell boundaries and have an important role in intercellular communication-a vital feature of multicellular development. Efflux carriers for the signalling molecule auxin from the PIN family are landmarks of cell polarity in plants and have a crucial involvement in auxin distribution-dependent development including embryo patterning, organogenesis and tropisms. Polar PIN localization determines the direction of intercellular auxin flow, yet the mechanisms generating PIN polarity remain unclear. Here we identify an endocytosis-dependent mechanism of PIN polarity generation and analyse its developmental implications. Real-time PIN tracking showed that after synthesis, PINs are initially delivered to the plasma membrane in a non-polar manner and their polarity is established by subsequent endocytic recycling. Interference with PIN endocytosis either by auxin or by manipulation of the Arabidopsis Rab5 GTPase pathway prevents PIN polarization. Failure of PIN polarization transiently alters asymmetric auxin distribution during embryogenesis and increases the local auxin response in apical embryo regions. This results in ectopic expression of auxin pathway-associated root-forming master regulators in embryonic leaves and promotes homeotic transformation of leaves to roots. Our results indicate a two-step mechanism for the generation of PIN polar localization and the essential role of endocytosis in this process. It also highlights the link between endocytosis-dependent polarity of individual cells and auxin distribution-dependent cell fate establishment for multicellular patterning.
Resumo:
MOTIVATION: Supporting the functionality of recent duplicate gene copies is usually difficult, owing to high sequence similarity between duplicate counterparts and shallow phylogenies, which hamper both the statistical and experimental inference. RESULTS: We developed an integrated evolutionary approach to identify functional duplicate gene copies and other lineage-specific genes. By repeatedly simulating neutral evolution, our method estimates the probability that an ORF was selectively conserved and is therefore likely to represent a bona fide coding region. In parallel, our method tests whether the accumulation of non-synonymous substitutions reveals signatures of selective constraint. We show that our approach has high power to identify functional lineage-specific genes using simulated and real data. For example, a coding region of average length (approximately 1400 bp), restricted to hominoids, can be predicted to be functional in approximately 94-100% of cases. Notably, the method may support functionality for instances where classical selection tests based on the ratio of non-synonymous to synonymous substitutions fail to reveal signatures of selection. Our method is available as an automated tool, ReEVOLVER, which will also be useful to systematically detect functional lineage-specific genes of closely related species on a large scale. AVAILABILITY: ReEVOLVER is available at http://www.unil.ch/cig/page7858.html.