857 resultados para Cech-Complete Spaces
Resumo:
We study complete continuity properties of operators onto ℓ2 and prove several results in the Dunford–Pettis theory of JB∗-triples and their projective tensor products, culminating in characterisations of the alternative Dunford–Pettis property for where E and F are JB∗-triples.
Resumo:
Operator spaces of Hilbertian JC∗ -triples E are considered in the light of the universal ternary ring of operators (TRO) introduced in recent work. For these operator spaces, it is shown that their triple envelope (in the sense of Hamana) is the TRO they generate, that a complete isometry between any two of them is always the restriction of a TRO isomorphism and that distinct operator space structures on a fixed E are never completely isometric. In the infinite-dimensional cases, operator space structure is shown to be characterized by severe and definite restrictions upon finite-dimensional subspaces. Injective envelopes are explicitly computed.
Resumo:
We provide a complete isomorphic classification of the Banach spaces of continuous functions on the compact spaces 2(m) circle plus [0, alpha], the topological sums of Cantor cubes 2(m), with m smaller than the first sequential cardinal, and intervals of ordinal numbers [0, alpha]. In particular, we prove that it is relatively consistent with ZFC that the only isomorphism classes of C(2(m) circle plus [0, alpha]) spaces with m >= N(0) and alpha >= omega(1) are the trivial ones. This result leads to some elementary questions on large cardinals.
Resumo:
A neighbourhood assignment in a space X is a family O = {O-x: x is an element of X} of open subsets of X such that X is an element of O-x for any x is an element of X. A set Y subset of X is a kernel of O if O(Y) = U{O-x: x is an element of Y} = X. We obtain some new results concerning dually discrete spaces, being those spaces for which every neighbourhood assignment has a discrete kernel. This is a strictly larger class than the class of D-spaces of [E.K. van Douwen, W.F. Pfeffer, Some properties of the Sorgenfrey line and related spaces, Pacific J. Math. 81 (2) (1979) 371-377]. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Motivated by a characterization of the complemented subspaces in Banach spaces X isomorphic to their squares X-2, we introduce the concept of P-complemented subspaces in Banach spaces. In this way, the well-known Pelczynski`s decomposition method can be seen as a Schroeder-Bernstein type theorem. Then, we give a complete description of the Schroeder-Bernstein type theorems for this new notion of complementability. By contrast, some very elementary questions on P-complementability are refinements of the Square-Cube Problem closely connected with some Banach spaces introduced by W.T. Gowers and B. Maurey in 1997. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
We classify up to isomorphism the spaces of compact operators K(E, F), where E and F are Banach spaces of all continuous functions defined on the compact spaces 2(m) circle plus [0, alpha], the topological sum of Cantor cubes 2(m) and the intervals of ordinal numbers [0, alpha]. More precisely, we prove that if 2(m) and aleph(gamma) are not real-valued measurable cardinals and n >= aleph(0) is not sequential cardinal, then for every ordinals xi, eta, lambda and mu with xi >= omega(1), eta >= omega(1), lambda = mu < omega or lambda, mu is an element of [omega(gamma), omega(gamma+1)[, the following statements are equivalent: (a) K(C(2(m) circle plus [0, lambda]), C(2(n) circle plus [0, xi])) and K(C(2(m) circle plus [0, mu]), C(2(n) circle plus [0, eta]) are isomorphic. (b) Either C([0, xi]) is isomorphic to C([0, eta] or C([0, xi]) is isomorphic to C([0, alpha p]) and C([0, eta]) is isomorphic to C([0,alpha q]) for some regular cardinal alpha and finite ordinals p not equal q. Thus, it is relatively consistent with ZFC that this result furnishes a complete isomorphic classification of these spaces of compact operators. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
In this paper we study complete maximal spacelike hypersurfaces in anti-de Sitter space H-1(n+1) with either constant scalar curvature or constant non-zero Gauss-Kronecker curvature. We characterize the hyperbolic cylinders H-m(c(1)) x Hn-m(c(2)), 1 <= m <= n - 1, as the only such hypersurfaces with (n - 1) principal curvatures with the same sign everywhere. In particular we prove that a complete maximal spacelike hypersurface in H-1(5) with negative constant Gauss-Kronecker curvature is isometric to H-1(c(1)) x H-3(c(2)). (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
[EN] The purpose of this paper is to present some fixed point theorems for Meir-Keeler contractions in a complete metric space endowed with a partial order. MSC: 47H10.
Resumo:
[EN] The purpose of this paper is to present a fixed point theorem for generalized contractions in partially ordered complete metric spaces. We also present an application to first-order ordinary differential equations.
Resumo:
The aim of this dissertation is to improve the knowledge of knots and links in lens spaces. If the lens space L(p,q) is defined as a 3-ball with suitable boundary identifications, then a link in L(p,q) can be represented by a disk diagram, i.e. a regular projection of the link on a disk. In this contest, we obtain a complete finite set of Reidemeister-type moves establishing equivalence, up to ambient isotopy. Moreover, the connections of this new diagram with both grid and band diagrams for links in lens spaces are shown. A Wirtinger-type presentation for the group of the link and a diagrammatic method giving the first homology group are described. A class of twisted Alexander polynomials for links in lens spaces is computed, showing its correlation with Reidemeister torsion. One of the most important geometric invariants of links in lens spaces is the lift in 3-sphere of a link L in L(p,q), that is the counterimage of L under the universal covering of L(p,q). Starting from the disk diagram of the link, we obtain a diagram of the lift in the 3-sphere. Using this construction it is possible to find different knots and links in L(p,q) having equivalent lifts, hence we cannot distinguish different links in lens spaces only from their lift. The two final chapters investigate whether several existing invariants for links in lens spaces are essential, i.e. whether they may assume different values on links with equivalent lift. Namely, we consider the fundamental quandle, the group of the link, the twisted Alexander polynomials, the Kauffman Bracket Skein Module and an HOMFLY-PT-type invariant.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Base map of the District of Columbia showing public and zoning areas, base prepared in the Office of the Surveyor, D.C., by direction of the Engineer Commissioner, D.C. It was published by Engineer Commissioner in 1936. Scale [ca. 1:19,200]. Base map "complete to June 13, 1933." The image inside the map neatline is georeferenced to the surface of the earth and fit to the Maryland State Plane Coordinate System Meters NAD83 (Fipszone 1900). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as residential areas, open spaces, commercial and industrial areas, alley dwelling areas, roads, block numbers, railroads and stations, drainage, selected public buildings and points of interest, parks, cemeteries, and more. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
Indentation of ceramic materials with smooth indenters such as parabolae of revolution and spheres can be conducted in the elastic regime to relatively high loads. Ceramic single crystals thus provide excellent calibration media for load-and depth-sensing indentation testing; however, they are generally anisotropic and a complete elastic analysis is cumbersome. This study presents a simplified procedure for the determination of the stiffness of contact for the indentation of an anisotropic half-space by a rigid frictionless parabola of revolution which, to first order, approximates spherical indentation. Using a similar approach, a new procedure is developed for analysing conical indentation of anisotropic elastic media. For both indenter shapes, the contact is found to be elliptical, and equations are determined for the size, shape and orientation of the ellipse and the indentation modulus.
Resumo:
Александър В. Архангелски, Митрофан М. Чобан, Екатерина П. Михайлова - Въведени са понятията o-хомогенно пространство, lo-хомогенно пространство, do-хомогенно пространство и co-хомогенно пространство. Показано е, че ако lo-хомогенно пространство X има отворено подпространство, което е q-пълно, то и самото X е q-пълно. Показано е, че ако lo-хомогенно пространство X съдържа навсякъде гъсто екстремално несвързано подпространство, тогава X е екстремално несвързано.
Resumo:
We say that a (countably dimensional) topological vector space X is orbital if there is T∈L(X) and a vector x∈X such that X is the linear span of the orbit {Tnx:n=0,1,…}. We say that X is strongly orbital if, additionally, x can be chosen to be a hypercyclic vector for T. Of course, X can be orbital only if the algebraic dimension of X is finite or infinite countable. We characterize orbital and strongly orbital metrizable locally convex spaces. We also show that every countably dimensional metrizable locally convex space X does not have the invariant subset property. That is, there is T∈L(X) such that every non-zero x∈X is a hypercyclic vector for T. Finally, assuming the Continuum Hypothesis, we construct a complete strongly orbital locally convex space.
As a byproduct of our constructions, we determine the number of isomorphism classes in the set of dense countably dimensional subspaces of any given separable infinite dimensional Fréchet space X. For instance, in X=ℓ2×ω, there are exactly 3 pairwise non-isomorphic (as topological vector spaces) dense countably dimensional subspaces.