995 resultados para CD exciton chirality method
Resumo:
An experimental design optimization (Box-Behnken design, BBD) was used to develop a CE method for the simultaneous resolution of propranolol (Prop) and 4-hydroxypropranolol enantiomers and acetaminophen (internal standard). The method was optimized using an uncoated fused silica capillary, carboxymethyl-beta-cyclodextrin (CM-beta-CD) as chiral selector and triethylamine/phosphoric acid buffer in alkaline conditions. A BBD for four factors was selected to observe the effects of buffer electrolyte concentration, pH, CM-beta-CD concentration and voltage on separation responses. Each factor was studied at three levels: high, central and low, and three center points were added. The buffer electrolyte concentration ranged from 25 to 75 mM, the pH ranged from 8 to 9, the CM-beta-CD concentration ranged from 3.5 to 4.5%w/v, and the applied run voltage ranged from 14 to 20 W. The responses evaluated were resolution and migration time for the last peak. The obtained responses were processed by Minitab (R) to evaluate the significance of the effects and to find the optimum analysis conditions. The best results were obtained using 4%w/v CM-beta-CD in 25 mM triethylamine/H(3)PO(4) buffer at pH 9 as running electrolyte and 17 kV of voltage. Resolution values of 1.98 and 1.95 were obtained for Prop and 4-hydroxypropranolol enantiomers, respectively. The total analysis time was around of 15 min. The BBD showed to be an adequate design for the development of a CE method, resulting in a rapid and efficient optimization of the pH and concentration of the buffer, cyclodextrin concentration and applied voltage.
Resumo:
A graphite furnace atomic absorption spectrometric method is proposed for the direct and simultaneous determination of Cd, Cu, and Se in human blood. Samples were diluted 1:10 (v/v) in 0.5% (v/v) HNO(3) + 0.5% (v/v) Triton X-100 solution. For 12 mu L injected sample volume + 5 mu L, of 1000 mg L(-1) Pd(NO(3))(2) + 3 mu L of 1000 mg L(-1) Mg(NO(3))(2), the calculated characteristic masses (mo) were 0.9 pg Cd, 16 pg Cu, and 39 pg Se, which are close to those mo values for single-element conditions for THGA furnace (1.3 pg Cd, 17 pg Cu, and 45 pg Se). Calibration curves with linear correlations better than 0.999 were obtained. The limits of detection (LOD) were 0.03 mu g L(-1) Cd, 0.075 mu g L(-1) Cu and 0.3 mu g L(-1) Se, and the relative standard deviations (n= 12) were 2.5%, 0.3%, and 1.5%, respectively. The method was applied for Cd, Cu, and Se determination in 10 human blood samples and the results were in agreement at the 95% confidence level with those obtained by inductively coupled plasma mass spectrometry. Concentrations of analytes in the selected blood samples varied from 1.7 to 3.2 mu g L(-1) Cd, 700 to 921.7 mu g L(-1) Cu, and from 68.6 to 350 mu g L(-1) Se. The accuracy of the proposed method was also evaluated by an addition-recovery experiment and recoveries of Cd, Cu, and Se added to blood samples ranged from 99-109%, 91-103%,and 93-103%, respectively.
Resumo:
Concentrations of eleven trace elements (Al, As, Cd, Cr, Co, Hg, Mn, Ni, Pb, Se, and Si) were measured in 39 (natural and flavoured) water samples. Determinations were performed using graphite furnace electrothermetry for almost all elements (Al, As, Cd, Cr, Co, Mn, Ni, Pb, and Si). For Se determination hydride generation was used, and cold vapour generation for Hg. These techniques were coupled to atomic absorption spectrophotometry. The trace element content of still or sparkling natural waters changed from brand to brand. Significant differences between natural still and natural sparkling waters (p<0.001) were only apparent for Mn. The Mann–Whitney U-test was used to search for significant differences between flavoured and natural waters. The concentration of each element was compared with the presence of flavours, preservatives, acidifying agents, fruit juice and/or sweeteners, according to the labelled composition. It was shown that flavoured waters generally increase the trace element content. The addition of preservatives and acidifying regulators had a significant influence on Mn, Co, As and Si contents (p<0.05). Fruit juice can also be correlated to the increase of Co and As. Sweeteners did not provide any significant difference in Mn, Co, Se and Si content.
Resumo:
A new inherently chiral calix[4]arene ICC 1 has been disclosed. The dissymmetry of 1 is generated from a chirality plane in the quinol moiety of a 1,3-bridged bicyclic calix[4]arene. ICC 1 has been resolved by enantioselective HPLC, and the chiroptical properties of both isolated antipodes (pS)-1 and (pR)-1 confirm their enantiomeric nature. The absolute configuration of the (pS)-1/(pR)-1 enantiomeric pair was established through time-dependent density functional theory (TDDFT) calculations of electronic circular dichroism (CD) spectra. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
The synthesis of two new inherently chiral calix[4]arenes (ICCs, 1 and 2), endowed with electron-rich concave surfaces, has been achieved through the desymmetrization of a lower rim distal-bridged oxacyclophane (OCP) macrocycle. The new highly emissive ICCs were resolved by chiral HPLC, and the enantiomeric nature of the isolated antipodes proved by electronic circular dichroism (CD). Using time-dependent density functional calculations of CD spectra, their absolute configurations were established. NMR studies with (S)-Pirkle's alcohol unequivocally showed that the host-guest interactions occur in the chiral pocket comprehending the calix-OCP exo cavities and the carbazole moieties.
Resumo:
Mirtazapine is an antidepressant that acts specifically on noradrenergic and sertonergic receptors. A LC-MS method was developed that allows the simultaneous analysis of the R-(-)- and S-(+)-enantiomers of mirtazapine (MIR), demethylmirtazapine (DMIR), and 8-hydroxymirtazapine (8-OH-MIR) in plasma of MIR-treated patients. The method involves a 3-step liquid-liquid extraction, an HPLC separation on a Chirobiotic V column, and MS detection in electrospray mode. The limit of quantification (LOQ) for all enantiomers was 0.5 ng/mL, and the intra- and interday CVs were within 3.3% to 11.7% (concentration ranges 5-50 ng/mL). A method is also presented for the quantitative analysis of glucuroconjugated MIR and 8-OH-MIR. S-(+)-8-OH-MIR is present in plasma mainly as its glucuronide. Preliminary data suggest that in all patients, except in those comedicated with CYP2D6 inhibitors such as fluoxetine and thioridazine, R-(-)-MIR concentrations were higher than those of S-(+)MIR. Moreover, fluvoxamine seems also to inhibit the metabolism of MIR. Therefore, this method seems to be suitable for the stereoselective assay of MIR and its metabolites in plasma of patients comedicated with MIR and other drugs for routine and research purposes.
Resumo:
The display tray holds the specimens over a thin cotton layer glued to a thick paper attached to the cd holder tray. Althought only a temporary storing method, it is a good alternative when compared to other layer models. It has the advantages of low cost, protection of specimens, minimal or no damage, as well as good visibility through its cover.
Resumo:
The centrifugal liquid membrane (CLM) cell has been utilized for chiroptical studies of liquid-liquid interfaces with a conventional circular dichroism (CD) spectropolarimeter. These studies required the characterization of optical properties of the rotating cylindrical CLM glass cell, which was used under the high speed rotation. In the present study, we have measured the circular and linear dichroism (CD and LD) spectra and the circular and linear birefringence (CB and LB) spectra of the CLM cell itself as well as those of porphyrine aggregates formed at the liquid-liquid interface in the CLM cell, applying Mueller matrix measurement method. From the results, it was confirmed that the CLM-CD spectra of the interfacial porphyrin aggregates observed by a conventional CD spectropolarimeter should be correct irrespective of LD and LB signals in the CLM cell.
Resumo:
Es va avaluar el contingut del sòl en Mn, Cu, Zn, Ni i Cd fent una extracció amb DTPA, segons el mètode de Lindsay i Norvell (1969). Les mostres analitzades procedien de parcel·les agrícoles d'arreu de Catalunya, conservades al Banc de Mostres de Sòls del Mapa de Sòls de Catalunya del DARP. Els resultats es van agrupar per sistemes agrícoles en funció de l'origen de les mostres, ja que dins de cada un es pot assumir una reducció important en l'interval de variació de diferents factors. Es va realitzar una comparació estadística entre els valors mitjans dels diferents sistemes agrícoles, entre els valors mitjans de les dues profunditats de sòl considerades, i una interpretació agronòmica. Els resultats van indicar que els sòls procedents d'horticultura intensiva del Maresme són els que tenen continguts disponibles més elevats dels metalls considerats. D'altra banda, es fa palès que els valors estan condicionats tant pel material originari del sòl com per l'acció antròpica. Per al Cu i el Zn en les mostres de sòls del Maresme els continguts trobats estan molt per sobre dels mínims considerats com a agronòmicament satisfactoris.
Resumo:
The spectrophotometric determination of Cd(II) using a flow injection system provided with a solid-phase reactor for cadmium preconcentration and on-line reagent preparation, is described. It is based on the formation of a dithizone-Cd complex in basic medium. The calibration curve is linear between 6 and 300 µg L-1 Cd(II), with a detection limit of 5.4 µg L-1, an RSD of 3.7% (10 replicates in duplicate) and a sample frequency of 11.4 h-1. The proposed method was satisfactorily applied to the determination of Cd(II) in surface, well and drinking waters.
Resumo:
This paper reports the development of a methodology for simultaneously determining As, Cd and Pb, employing GF AAS with polarized Zeeman-effect background correction. In order to make the procedure applicable, the influence of pyrolysis and atomization temperatures and the amount of chemical modifiers were studied. Factorial and central composite designs were used to optimize these variables. Precision and accuracy of the method were investigated using Natural Water Reference material, Nist SRM 1640. Results are in agreement with certified values at the 95% confidence limit when the Student t-test is used. This methodology was used for quality control of purified water for hemodialysis.
Resumo:
The Cd phytoavailability in sewage sludge-amended soils of different pHs using the 109Cd L-value isotopic method and Cd extracted by DTPA has been determined. Maize plants (Zea mais L.) were grown under greenhouse conditions in a xanthic ferralsol at different pHs amended with five sewage sludge (SS) rates, and labeled with 74 kBq kg-1 of 109Cd. The SS rates altered the properties of the soil chemicals and these influenced the isotopic parameter (L-value) and percent of Cd uptake by plants from soil (%Cdpdfs) and SS (%CdpdfSS). L-values and Cd extracted by DTPA correlate significantly with SS rates and Cd uptake by plants and are efficient for predicting the Cd phytoavailability in the sewage sludge-amended soil.
Resumo:
A method was developed for quantification of Cd and Pb in ethanol fuel by filter furnace atomic absorption spectrometry. Filter furnace was used to eliminate the need for chemical modification, to stabilize volatile analytes and to allow the application of short pyrolysis step. The determinations in samples were carried out against calibration solutions prepared in ethanol. Recovery tests were made in seven commercial ethanol fuel samples with values between 90 and 120%. Limits of detection were 0.1 µg L-1 for Cd and 0.3 µg L-1 for Pb. Certified water samples (APS 1071, APS 1033, NIST 1643d, NIST 1640) were also used to evaluate accuracy and recoveries from 86.8% to115% were obtained.
Resumo:
An efficient flotation method based on the combination of flame atomic absorption spectrometry (FAAS) and separation and preconcentration step for determination of Cr3+, Cu 2+, Co2+, Ni2+, Zn2+, Cd 2+, Fe3+ and Pb2+ ions in various real samples by the possibility of applying bis(2-hydroxyacetophenone)-1,4-butanediimine (BHABDI) as a new collector was studied. The influence of pH, amount of BHABDI as collector, sample matrix, type and amount of eluting agent, type and amount of surfactant as floating agent, ionic strength and air flow rates i.e. variables affecting the efficiency of the extraction system was evaluated. It is ascertained that metal ions such as iron can be separated simultaneously from matrix in the presence of 0.012 mM ligand, 0.025% (w/v) of CTAB to a test sample of 750 mL at pH 6.5. These ions can be eluted quantitatively with 6 mL of 1.0 mol L-1 HNO3 in methanol which lead to the enrichment factor of 125. The detection limits for analyte ions were in the range of 1.3-2.4 ng mL-1. The method has been successfully applied for determination of trace amounts of ions in various real samples.
Resumo:
Cellulose acetate polymeric membranes had been prepared by a procedure of two steps, combining the method of phase inversion and the technique of hydrolysis-deposition. The first step was the preparation of the membrane, and together was organomodified with tetraethylortosilicate and 3-aminopropyltrietoxysilane. Parameters that exert influence in the complexation of the metallic ion, as pH, time of complexation, metal concentration, had been studied in laboratory using tests of metal removal. The membranes had presented resistance mechanics and reactivity to cations, being able to be an alternative for the removal, daily pay-concentration or in the study of the lability of metals complexed.