998 resultados para CATHEPSIN L
2D QSAR and similarity studies on cruzain inhibitors aimed at improving selectivity over cathepsin L
Resumo:
Hologram quantitative structure-activity relationships (HQSAR) were applied to a data set of 41 cruzain inhibitors. The best HQSAR model (Q(2) = 0.77; R-2 = 0.90) employing Surflex-Sim, as training and test sets generator, was obtained using atoms, bonds, and connections as fragment distinctions and 4-7 as fragment size. This model was then used to predict the potencies of 12 test set compounds, giving satisfactory predictive R-2 value of 0,88. The contribution maps obtained from the best HQSAR model are in agreement with the biological activities of the study compounds. The Trypanosoma cruzi cruzain shares high similarity with the mammalian homolog cathepsin L. The selectivity toward cruzam was checked by a database of 123 compounds, which corresponds to the 41 cruzain inhibitors used in the HQSAR model development plus 82 cathepsin L inhibitors. We screened these compounds by ROCS (Rapid Overlay of Chemical Structures), a Gaussian-shape volume overlap filter that can rapidly identify shapes that match the query molecule. Remarkably, ROCS was able to rank the first 37 hits as being only cruzain inhibitors. In addition, the area under the curve (AUC) obtained with ROCS was 0.96, indicating that the method was very efficient to distinguishing between cruzain and cathepsin L inhibitors. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Cathepsin L-like proteinases (CAL) are major digestive proteinases in the beetle Tenebrio molitor. Procathepsin Ls 2 (pCAL2) and 3 (pCAL3) were expressed as recombinant proteins in Escherichia coil, purified and activated under acidic conditions. Immunoblot analyses of different T. molitor larval tissues demonstrated that a polyclonal antibody to pCAL3 recognized pCAL3 and cathepsin L 3 (CAD) only in the anterior two-thirds of midgut tissue and midgut luminal contents of T. molitor larvae. Furthermore, immunocytolocalization data indicated that pCAL3 occurs in secretory vesicles and microvilli in anterior midgut Therefore CAL3, like cathepsin L 2 (CAL2), is a digestive enzyme secreted by T. molitor anterior midgut CAD hydrolyses Z-FR-MCA and Z-RR-MCA (typical cathepsin substrates), whereas CAL2 hydrolyses only Z-FR-MCA. Active site mutants (pCAL2C25S and pCAL3C265) were constructed by replacing the catalytic cysteine with serine to prevent autocatalytic processing. Recombinant pCAL2 and pCAL3 mutants (pCAL2C25S and pCAL3C26S) were prepared, crystallized and their 3D structures determined at 1.85 and 2.1 angstrom, respectively. While the overall structure of these enzymes is similar to other members of the papain superfamily, structural differences in the S2 subsite explain their substrate specificities. The data also supported models for CAL trafficking to lysosomes and to secretory vesicles to be discharged into midgut contents. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
A genetic deficiency of the cysteine protease cathepsin L (Ctsl) in mice results in impaired positive selection of conventional CD4+ T helper cells as a result of an incomplete processing of the MHC class II associated invariant chain or incomplete proteolytic generation of positively selecting peptide ligands. The human genome encodes, in contrast to the mouse genome, for two cathepsin L proteases, namely cathepsin L (CTSL) and cathepsin V (CTSV; alternatively cathepsin L2). In the human thymic cortex, CTSV is the predominately expressed protease as compared to CTSL or other cysteine cathepsins. In order to analyze the functions of CTSL and CTSV in the positive selection of CD4+ T cells we employed Ctsl knock-out mice crossed either with transgenic mice expressing CTSL under the control of its genuine human promoter or with transgenic mice expressing CTSV under the control of the keratin 14 (K14) promoter, which drives expression to the cortical epithelium. Both human proteases are expressed in the thymus of the transgenic mice, and independent expression of both CTSL and CTSV rescues the reduced frequency of CD4+ T cells in Ctsl-deficient mice. Moreover, the expression of the human cathepsins does not change the number of CD4+CD25+Foxp3+ regulatory T cells, but the normalization of the frequency of conventional CD4+ T cell in the transgenic mice results in a rebalancing of conventional T cells and regulatory T cells. We conclude that the functional differences of CTSL and CTSV in vivo are not mainly determined by their inherent biochemical properties, but rather by their tissue specific expression pattern.
Resumo:
Two recombinant Fasciola hepatica antigens, saposin-like protein-2 (recSAP2) and cathepsin L-1 (recCL1), were assessed individually and in combination in enzyme-linked immunosorbent assays (ELISA) for the specific serodiagnosis of human fasciolosis in areas of low endemicity as encountered in Central Europe. Antibody detection was conducted using ProteinA/ProteinG (PAG) conjugated to alkaline phosphatase. Test characteristics as well as agreement with results from an ELISA using excretory-secretory products (FhES) from adult stage liver flukes was assessed by receiver operator characteristic (ROC) analysis, specificity, sensitivity, Youdens J and overall accuracy. Cross-reactivity was assessed using three different groups of serum samples from healthy individuals (n=20), patients with other parasitic infections (n=87) and patients with malignancies (n=121). The best combined diagnostic results for recombinant antigens were obtained using the recSAP2-ELISA (87% sensitivity, 99% specificity and 97% overall accuracy) employing the threshold (cut-off) to discriminate between positive and negative reactions that maximized Youdens J. The findings showed that recSAP2-ELISA can be used for the routine serodiagnosis of chronic fasciolosis in clinical laboratories; the use of the PAG-conjugate offers the opportunity to employ, for example, rabbit hyperimmune serum for the standardization of positive controls.
Resumo:
Earth’s biota produces vast quantities of polymerized silica at ambient temperatures and pressures by mechanisms that are not understood. Silica spicules constitute 75% of the dry weight of the sponge Tethya aurantia, making this organism uniquely tractable for analyses of the proteins intimately associated with the biosilica. Each spicule contains a central protein filament, shown by x-ray diffraction to exhibit a highly regular, repeating structure. The protein filaments can be dissociated to yield three similar subunits, named silicatein α, β, and γ. The molecular weights and amino acid compositions of the three silicateins are similar, suggesting that they are members of a single protein family. The cDNA sequence of silicatein α, the most abundant of these subunits, reveals that this protein is highly similar to members of the cathepsin L and papain family of proteases. The cysteine at the active site in the proteases is replaced by serine in silicatein α, although the six cysteines that form disulfide bridges in the proteases are conserved. Silicatein α also contains unique tandem arrays of multiple hydroxyls. These structural features may help explain the mechanism of biosilicification and the recently discovered activity of the silicateins in promoting the condensation of silica and organically modified siloxane polymers (silicones) from the corresponding silicon alkoxides. They suggest the possibility of a dynamic role of the silicateins in silicification of the sponge spicule and offer the prospect of a new synthetic route to silica and siloxane polymers at low temperature and pressure and neutral pH.
Resumo:
The secretion and activation of the major cathepsin L1 cysteine protease involved in the virulence of the helminth pathogen Fasciola hepatica was investigated. Only the fully processed and active mature enzyme can be detected in medium in which adult F. hepatica are cultured. However, immunocytochemical studies revealed that the inactive procathepsin L1 is packaged in secretory vesicles of epithelial cells that line the parasite gut. These observations suggest that processing and activation of procathepsin L1 occurs following secretion from these cells into the acidic gut lumen. Expression of the 37-kDa procathepsin L1 in Pichia pastoris showed that an intermolecular processing event within a conserved GXNXFXD motif in the propeptide generates an active 30-kDa intermediate form. Further activation of the enzyme was initiated by decreasing the pH to 5.0 and involved the progressive processing of the 37 and 30-kDa forms to other intermediates and finally to a fully mature 24.5 kDa cathepsin L with an additional 1 or 2 amino acids. An active site mutant procathepsin L, constructed by replacing the Cys26 with Gly26, failed to autoprocess. However, [Gly26]procathepsin L was processed by exogenous wild-type cathepsin L to a mature enzyme plus 10 amino acids attached to the N terminus. This exogenous processing occurred without the formation of a 30-kDa intermediate form. The results indicate that activation of procathepsin L1 by removal of the propeptide can occur by different pathways, and that this takes place within the parasite gut where the protease functions in food digestion and from where it is liberated as an active enzyme for additional extracorporeal roles.
Resumo:
Cathepsins are known to have many important physiological roles and provide a viable target for inhibition. Fluorobenzoyl dipeptide derivatives were synthesized and tested for biological activity in an effort to find an efficient inhibitor of the cysteine protease cathepsin L. Thirty-six novel inhibitors (1-36) were synthesized from protected amino acids via the standard DCC/HOBt coupling protocol, containing a benzyl ester or a nitrile as an electrophilic warhead. The activity of the inhibitors was evaluated against cathepsin L and IC50 values calculated. Modification of both amino acids and terminal groups afforded compounds with single digit micromolar inhibition. Results utilizing the benzoyl-L-leucine-glycine nitrile backbone are comparable to that for the commercially available inhibitor 39.
Resumo:
The helminth parasite Fasciola hepatica secretes cathepsin L cysteine proteases to invade its host, migrate through tissues and digest haemoglobin, its main source of amino acids. Here we investigated the importance of pH in regulating the activity and functions of the major cathepsin L protease FheCL1. The slightly acidic pH of the parasite gut facilitates the auto-catalytic activation of FheCL1 from its inactive proFheCL1 zymogen; this process was approximately 40-fold faster at pH 4.5 than at pH 7.0. Active mature FheCL1 is very stable at acidic and neutral conditions (the enzyme retained approximately 45% activity when incubated at 37 degrees C and pH 4.5 for 10 days) and displayed a broad pH range for activity peptide substrates and the protein ovalbumin, peaking between pH 5.5 and pH 7.0. This pH profile likely reflects the need for FheCL1 to function both in the parasite gut and in the host tissues. FheCL1, however, could not cleave its natural substrate Hb in the pH range pH 5.5 and pH 7.0; digestion occurred only at pH
Resumo:
Helminth pathogens express papain-like cysteine peptidases, termed cathepsins, which have important roles in virulence, including host entry, tissue migration and the suppression of host immune responses. The liver fluke Fasciola hepatica, an emerging human pathogen, expresses the largest cathepsin L cysteine protease family yet described. Recent phylogenetic, biochemical and structural studies indicate that this family contains five separate clades, which exhibit overlapping but distinct substrate specificities created by a process of gene duplication followed by subtle residue divergence within the protease active site. The developmentally regulated expression of these proteases correlates with the passage of the parasite through host tissues and its encounters with different host macromolecules.
Resumo:
Sialostatin L (SialoL) is a secreted cysteine protease inhibitor identified in the salivary glands of the Lyme disease vector Ixodes scapularis. In this study, we reveal the mechanisms of SialoL immunomodulatory actions on the vertebrate host. LPS-induced maturation of dendritic cells from C57BL/6 mice was significantly reduced in the presence of SialoL. Although OVA degradation was not affected by the presence of SialoL in dendritic cell cultures, cathepsin S activity was partially inhibited, leading to an accumulation of a 10-kDa invariant chain intermediate in these cells. As a consequence, in vitro Ag-specific CD4(+) T cell proliferation was inhibited in a time-dependent manner by SialoL, and further studies engaging cathepsin S(-/-) or cathepsin L(-/-) dendritic cells confirmed that the immunomodulatory actions of SialoL are mediated by inhibition of cathepsin S. Moreover, mice treated with SialoL displayed decreased early T cell expansion and recall response upon antigenic stimulation. Finally, SialoL administration during the immunization phase of experimental autoimmune encephalomyelitis in mice significantly prevented disease symptoms, which was associated with impaired IFN-gamma and IL-17 production and specific T cell proliferation. These results illuminate the dual mechanism by which a human disease vector protein modulates vertebrate host immunity and reveals its potential in prevention of an autoimmune disease. The Journal of Immunology, 2009, 182: 7422-7429.
Resumo:
The cathepsin enzymes represent an important family of lysosomal proteinases with a broad spectrum of functions in many, if not in all, tissues and cell types. In addition to their primary role during the normal protein turnover, they possess highly specific proteolytic activities, including antigen processing in the immune response and a direct role in the development of obesity and tumours. In pigs, the involvement of cathepsin enzymes in proteolytic processes have important effects during the conversion of muscle to meat, due to their influence on meat texture and sensory characteristics, mainly in seasoned products. Their contribution is fundamental in flavour development of dry-curing hams. However, several authors have demonstrated that high cathepsin activity, in particular of cathepsin B, is correlated to defects of these products, such as an excessive meat softness together with abnormal free tyrosine content, astringent or metallic aftertastes and formation of a white film on the cut surface. Thus, investigation of their genetic variability could be useful to identify DNA markers associated with these dry cured hams parameters, but also with meat quality, production and carcass traits in Italian heavy pigs. Unfortunately, no association has been found between cathepsin markers and meat quality traits so far, in particular with cathepsin B activity, suggesting that other genes, besides these, affect meat quality parameters. Nevertheless, significant associations were observed with several carcass and production traits in pigs. A recent study has demonstrated that different single nucleotide polymorphisms (SNPs) localized in cathepsin D (CTSD), F (CTSF), H and Z genes were highly associated with growth, fat deposition and production traits in an Italian Large White pig population. The aim of this thesis was to confirm some of these results in other pig populations and identify new cathepsin markers in order to evaluate their effects on cathepsin activity and other production traits. Furthermore, starting from the data obtained in previous studies on CTSD gene, we also analyzed the known polymorphism located in the insulin-like growth factor 2 gene (IGF2 intron3-g.3072G>A). This marker is considered the causative mutation for the quantitative trait loci (QTL) affecting muscle mass and fat deposition in pigs. Since IGF2 maps very close to CTSD on porcine chromosome (SSC) 2, we wanted to clarify if the effects of the CTSD marker were due to linkage disequilibrium with the IGF2 intron3-g.3072G>A mutation or not. In the first chapter, we reported the results from these two SSC2 gene markers. First of all, we evaluated the effects of the IGF2 intron3-g.3072G>A polymorphism in the Italian Large White breed, for which no previous studies have analysed this marker. Highly significant associations were identified with all estimated breeding values for production and carcass traits (P<0.00001), while no effects were observed for meat quality traits. Instead, the IGF2 intron3-g.3072G>A mutation did not show any associations with the analyzed traits in the Italian Duroc pigs, probably due to the low level of variability at this polymorphic site for this breed. In the same Duroc pig population, significant associations were obtained for the CTSD marker for all production and carcass traits (P < 0.001), after excluding possible confounding effects of the IGF2 mutation. The effects of the CTSD g.70G>A polymorphism were also confirmed in a group of Italian Large White pigs homozygous for the IGF2 intron3-g.3072G allele G (IGF2 intron3-g.3072GG) and by haplotype analysis between the markers of the two considered genes. Taken together, all these data indicated that the IGF2 intron3-g.3072G>A mutation is not the only polymorphism affecting fatness and muscle deposition in pigs. In the second chapter, we reported the analysis of two new SNPs identified in cathepsin L (CTSL) and cathepsin S (CTSS) genes and the association results with meat quality parameters (including cathepsin B activity) and several production traits in an Italian Large White pig population. Allele frequencies of these two markers were evaluated in 7 different pig breeds. Furthermore, we mapped using a radiation hybrid panel the CTSS gene on SSC4. Association studies with several production traits, carried out in 268 Italian Large White pigs, indicated positive effects of the CTSL polymorphism on average daily gain, weight of lean cuts and backfat thickness (P<0.05). The results for these latter traits were also confirmed using a selective genotype approach in other Italian Large White pigs (P<0.01). In the 268 pig group, the CTSS polymorphism was associated with feed:gain ratio and average daily gain (P<0.05). Instead, no association was observed between the analysed markers and meat quality parameters. Finally, we wanted to verify if the positive results obtained for the cathepsin L and S markers and for other previous identified SNPs (cathepsin F, cathepsin Z and their inhibitor cystatin B) were confirmed in the Italian Duroc pig breed (third chapter). We analysed them in two groups of Duroc pigs: the first group was made of 218 performance-tested pigs not selected by any phenotypic criteria, the second group was made of 100 Italian Duroc pigs extreme and divergent for visible intermuscular fat trait. In the first group, the CTSL polymorphism was associated with weight of lean cuts (P<0.05), while suggestive associations were obtained for average daily gain and backfat thickness (P<0.10). Allele frequencies of the CTSL gene marker also differed positively among the visible intermuscular extreme tails. Instead, no positive effects were observed for the other DNA markers on the analysed traits. In conclusion, in agreement with the present data and for the biological role of these enzymes, the porcine CTSD and CTSL markers: a) may have a direct effect in the biological mechanisms involved in determining fat and lean meat content in pigs, or b) these markers could be very close to the putative functional mutation(s) present in other genes. These findings have important practical applications, in particular the CTSD and CTSL mutations could be applied in a marker assisted selection (MAS) both in the Italian Large White and Italian Duroc breeds. Marker assisted selection could also increase in efficiency by adding information from the cathepsin S genotype, but only in the Italian Large White breed.
Resumo:
The cysteine peptidase cathepsin B is important in thyroid physiology by being involved in thyroid prohormone processing initiated in the follicular lumen and completed in endo-lysosomal compartments. However, cathepsin B has also been localized to the extrafollicular space and is therefore suggested to promote invasiveness and metastasis in thyroid carcinomas through, e.g., ECM degradation. In this study, immunofluorescence and biochemical data from subcellular fractionation revealed that cathepsin B, in its single- and two-chain forms, is localized to endo-lysosomes in the papillary thyroid carcinoma cell line KTC-1 and in the anaplastic thyroid carcinoma cell lines HTh7 and HTh74. This distribution is not affected by thyroid stimulating hormone (TSH) incubation of HTh74, the only cell line that expresses a functional TSH-receptor. Immunofluorescence data disclosed an additional nuclear localization of cathepsin B immunoreactivity. This was supported by biochemical data showing a proteolytically active variant slightly smaller than the cathepsin B proform in nuclear fractions. We also demonstrate that immunoreactions specific for cathepsin V, but not cathepsin L, are localized to the nucleus in HTh74 in peri-nucleolar patterns. As deduced from co-localization studies and in vitro degradation assays, we suggest that nuclear variants of cathepsins are involved in the development of thyroid malignancies through modification of DNA-associated proteins.
Resumo:
In bovines characterization of biochemical and molecular determinants of the dominant follicle before and during different time intervals after gonadotrophin surge requires precise identification of the dominant follicle from a follicular wave. The objectives of the present study were to standardize an experimental model in buffalo cows for accurately identifying the dominant follicle of the first wave of follicular growth and characterize changes in follicular fluid hormone concentrations as well as expression patterns of various genes associated with the process of ovulation. From the day of estrus (day 0), animals were subjected to blood sampling and ultrasonography for monitoring circulating progesterone levels and follicular growth. On day 7 of the cycle, animals were administered a PGF2α analogue (Tiaprost Trometamol, 750 μg i.m.) followed by an injection of hCG (2000 IU i.m.) 36 h later. Circulating progesterone levels progressively increased from day 1 of the cycle to 2.26 ± 0.17 ng/ml on day 7 of the cycle, but declined significantly after PGF2α injection. A progressive increase in the size of the dominant follicle was observed by ultrasonography. The follicular fluid estradiol and progesterone concentrations in the dominant follicle were 600 ± 16.7 and 38 ± 7.6 ng/ml, respectively, before hCG injection and the concentration of estradiol decreased to 125.8 ± 25.26 ng/ml, but concentration of progesterone increased to 195 ± 24.6 ng/ml, 24 h post-hCG injection. Inh-α and Cyp19A1 expressions in granulosa cells were maximal in the dominant follicle and declined in response to hCG treatment. Progesterone receptor, oxytocin and cycloxygenase-2 expressions in granulosa cells, regarded as markers of ovulation, were maximal at 24 h post-hCG. The expressions of genes belonging to the super family of proteases were also examined; Cathepsin L expression decreased, while ADAMTS 3 and 5 expressions increased 24 h post-hCG treatment. The results of the current study indicate that sequential treatments of PGF2α and hCG during early estrous cycle in the buffalo cow leads to follicular growth that culminates in ovulation. The model system reported in the present study would be valuable for examining temporo-spatial changes in the periovulatory follicle immediately before and after the onset of gonadotrophin surge.
Resumo:
Cancer is becoming the leading cause of deaths in the world. As 90% of all deaths from cancer are caused by metastasis, discovery of the mechanisms behind cancer cell invasion and metastasis is of utmost importance. Only new effective therapies targeting cancer progression can reduce cancer mortality rates. The aim of this study was to identify molecules that are relevant for tumor cell invasion and spreading in fibrosarcomas and melanomas, and to analyze their potential for cancer biomarkers or therapeutic targets. First, the gene expression changes of normal cells and transformed cells showing high invasiveness, S-adenosylmethionine decarboxylase (AdoMetDC)-transfected murine fibroblasts and human melanoma cells, were studied by microarray analyses. The function of the identified candidate molecules were then studied in detail in these cell lines. Finally, the physiological relevance of the identified changes was studied by immunohistochemical analyses of human sarcoma and melanoma specimens or by a mouse xenograft model. In fibrosarcoma cells, the most remarkable change detected was a dramatic up-regulation of the actin-sequestering molecule thymosin beta 4 (TB4), which was shown to be important for the transformed phenotype of the AdoMetDC-transfected cells (Amdc-s and -as). A sponge toxin latrunculin A, inhibiting the binding of TB4 to actin, was found to selectively inhibit the migration and invasion of these cells. Further, Amdc-s-induced mouse tumors and human high-grade sarcomas were found to show intense TB4 immunostaining. In addition to TB4, integrin subunits alfa 6 and beta 7 (ItgA6 and ItgB7) were found to be up-regulated in Amdc-s and -as cells. ItgA6 was shown to dimerize mainly with ItgB1 in Amdc-s. Inhibition of ItgA6 or ItgB1 function with neutralizing antibodies fully blocked the invasiveness of Amdc-s cells, and importantly also human HT-1080 fibrosarcoma cells, in three-dimensional (3D)-Matrigel mimicking tumor extracellular matrix (ECM). By immunohistochemical analyses, strong staining for ITGA6 was detected in human high-grade fibrosarcomas and other sarcomas, especially at the invasion fronts of the tumors. In the studied melanoma cell lines, the expression levels of the adhesion-related ECM proteins tenascin-C (TN-C), fibronectin (FN), and transforming growth factor beta-induced (TGFBI) were found to be highly up-regulated. By immunohistochemistry, intense TN-C and FN staining was detected in invasive and metastatic melanoma tumors, showing co-localization (together with procollagen-I) in tubular meshworks and channels around the invading melanoma cells. In vitro, TN-C and FN were further found to directly stimulate the migration of melanoma cells in 3D-collagen-I matrix. The third candidate protein, TGFBI, was found to be an anti-adhesive molecule for melanoma cells, and knockdown of its expression in metastatic melanoma cells (TGFBI-KD cells) led to dramatically impaired tumor growth in immunocompromized mice. Interestingly, the control tumors showed intense TGFBI immunostaining in the invasion fronts, showing partial co-localization with the fibrillar FN staining, whereas the small TGFBI-KD cell-induced tumors displayed amorphous, non-fibrillar FN staining. These data suggest an important role for TGFBI in FN fibrillogenesis and melanoma progression. In conclusion, we have identified several invasion-related molecules, which show potential for cancer diagnostic or prognostic markers, or therapeutic targets. Based on our previous and present fibrosarcoma studies, we propose the possibility of using ITGA6 antagonists (affecting tumor cell adhesion) in combination with TB4 inhibitors (affecting tumor cell migration) and cathepsin L inhibitors (affecting the degradation of basement membrane and ECM proteins) for the treatment of fibrosarcomas and other tumors overexpressing these molecules. With melanoma cells, in turn, we point to the importance of three secreted ECM proteins, TN-C, FN, and TGFBI, in melanoma progression. Of these, especially the potential of TN-C as a prognostic melanoma biomarker and TGFBI as a promising therapeutic target molecule are clearly worth additional studies.
Resumo:
Expressed sequence tag (EST) analysis is an efficient tool for gene discovery and profiling gene expression. Aeromonas hydrophila, a ubiquitous waterborne bacterium, is one of the most frequent pathogens isolated from diseased aquatic organisms. In order to understand the molecular mechanism of anti-bacteria immune response in reptile, we have investigated the differentially expressed genes in Chinese soft-shelled turtle (Trionyx sinensis) experimentally infected with A. hydrophila by suppression subtractive hybridization (SSH). Forty-two genes were identified from more than 200 clones, of which 25 genes are found for the first time in reptiles, and classified into 6 categories: 18 in defense/immunity. 4 in catalysis, 2 in retrotransposon; 2 in cell signal transduction, 5 in cell metabolism, 10 in protein expression, and 1 in cell structure. Of the 42 differentially expressed genes, 6 genes, IL-8, serum amyloid A (SAA), CD9, CD59, activating transcription factor 4 (ATF4) and cathepsin L genes, were further observed to be up-regulated in the infected turtles by virtual Northern hybridization and RT-PCR assays. (C) 2008 Elsevier B.V. All rights reserved.