951 resultados para Biological structure
Resumo:
This thesis explores the potential of chiral plasmonic nanostructures for the ultrasensitive detection of protein structure. These nanostructures support the generation of fields with enhanced chirality relative to circularly polarised light and are an extremely incisive probe of protein structure. In chapter 4 we introduce a nanopatterned Au film (Templated Plasmonic Substrate, TPS) fabricated using a high through-put injection moulding technique which is a viable alternative to expensive lithographically fabricated nanostructures. The optical and chiroptical properties of TPS nanostructures are found to be highly dependent on the coupling between the electric and magnetic modes of the constituent solid and inverse structures. Significantly, refractive index based measurements of strongly coupled TPSs display a similar sensitivity to protein structure as previous lithographic nanostructures. We subsequently endeavour to improve the sensing properties of TPS nanostructures by developing a high through-put nanoscale chemical functionalisation technique. This process involves a chemical protection/deprotection strategy. The protection step generates a self-assembled monolayer (SAM) of a thermally responsive polymer on the TPS surface which inhibits protein binding. The deprotection step exploits the presence of nanolocalised thermal gradients in the water surrounding the TPS upon irradiation with an 8ns pulsed laser to modify the SAM conformation on surfaces with high net chirality. This allows binding of biomaterial in these regions and subsequently enhances the TPS sensitivity levels. In chapter 6 an alternative method for the detection of protein structure using TPS nanostructures is introduced. This technique relies on mediation of the electric/magnetic coupling in the TPS by the adsorbed protein. This phenomenon is probed through both linear reflectance and nonlinear second harmonic generation (SHG) measurements. Detection of protein structure using this method does not require the presence of fields of enhanced chirality whilst it is also sensitive to a larger array of secondary structure motifs than the measurements in chapters 4 and 5. Finally, a preliminary investigation into the detection of mesoscale biological structure is presented. Sensitivity to the mesoscale helical pitch of insulin amyloid fibrils is displayed through the asymmetry in the circular dichroism (CD) of lithographic gammadions of varying thickness upon adsorption of insulin amyloid fibril spherulites and fragmented fibrils. The proposed model for this sensitivity to the helical pitch relies on the vertical height of the nanostructures relative to this structural property as well as the binding orientation of the fibrils.
Resumo:
The Schizosaccharomyces pombe Mei2 gene encodes an RNA recognition motif (RRM) protein that stimulates meiosis upon binding a specific non-coding RNA and subsequent accumulation in a “mei2-dot” in the nucleus. We present here the first systematic characterization of the family of proteins with characteristic Mei2-like amino acid sequences. Mei2-like proteins are an ancient eukaryotic protein family with three identifiable RRMs. The C-terminal RRM (RRM3) is unique to Mei2-like proteins and is the most highly conserved of the three RRMs. RRM3 also contains conserved sequence elements at its C-terminus not found in other RRM domains. Single copy Mei2-like genes are present in some fungi, in alveolates such as Paramecium and in the early branching eukaryote Entamoeba histolytica, while plants contain small families of Mei2-like genes. While the C-terminal RRM is highly conserved between plants and fungi, indicating conservation of molecular mechanisms, plant Mei2-like genes have changed biological context to regulate various aspects of developmental pattern formation.
Resumo:
Water brings its remarkable thermodynamic and dynamic anomalies in the pure liquid state to biological world where water molecules face a multitude of additional interactions that frustrate its hydrogen bond network. Yet the water molecules participate and control enormous number of biological processes in manners which are yet to be understood at a molecular level. We discuss thermodynamics, structure, dynamics and properties of water around proteins and DNA, along with those in reverse micelles. We discuss the roles of water in enzyme kinetics, in drug-DNA intercalation and in kinetic-proof reading ( the theory of lack of errors in biosynthesis). We also discuss how water may play an important role in the natural selection of biomolecules. (C) 2011 Elsevier B. V. All rights reserved.
Resumo:
The transition metal complexes of salicylhydrazone of anthranilhydrazide (H2L) were synthesised. The structures of metal complexes were characterized by various spectroscopic [IR, NMR, UV-Vis, EPR], thermal and other physicochemical methods. The single-crystal X-ray diffraction study of [Cu(HL)Cl]center dot H2O reveal its orthorhombic system with space group P2(1)2(1)2 and Z=4. The copper center has a distorted square planar geometry with ONO and Cl as the donor atoms. The ligand and its metal chelates have been screened for their antimicrobial and anti-tubercular activities using serial dilution method. Metal complexes in general have exhibited better antibacterial and antifungal activity than the free ligand and in few cases better than the standard used. Among the bacterial strains used, the complexes are highly potent against Gram-positive strains compared to Gram-negative. Anti-tubercular activity exhibited by the Co(II) complex is comparable with the standard used. (C) 2011 Elsevier B. V. All rights reserved.
Resumo:
The reaction of the benzoylhydrazone of 2-hydroxybenzaldehyde (H2L) with MoO2(acac)(2)] proceeds smoothly in refluxing ethanol to afford an orange complex MoO2L(C2H5OH)] (1). The substrate binding capacity of 1 has been demonstrated by the formation and isolation of two mononuclear MoO2L(Q)] {where Q = imidazole (2a) and 1-methylimidazole (2b)} and one dinuclear (MoO2L)(2)(Q)] {Q = 4,4'-bipyridine (3)} mixed-ligand oxomolybdenum complex. All the complexes have been characterized by elemental analysis, magnetic and spectroscopic (IR, UV-Vis and NMR) measurements. The molecular structures of all the oxomolybdenum(VI) complexes (1, 2a, 2b and 3) have been determined by X-ray crystallography. In each complex, the dianionic planar ligand is coordinated to the metal centre via one enolate oxygen, one phenolate oxygen and an azomethine nitrogen atom. The complexes have been screened for their antibacterial activity against Escherichia coli, Bacillus and Pseudomonas aeruginosa. The minimum inhibitory concentration of these complexes and their antibacterial activity indicates that compounds 2a and 2b are potential lead molecules for drug designing. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
It was expected that there are a coil (289 similar to 325) and two a helix (alpha(1)368 similar to 373, alpha(2)381 similar to 388) structures in p53 protein C-terminal region based on its mRNA secondary structure template and Chou-Fasman's protein secondary structure principle of prediction. The result was conformed by the other four methods of protein secondary structure prediction that are based on the multiple sequence alignment (accuracy = 73.20%). Combine with the 31 amino acids crystal structure of the oligomerization, the three dimensional conformation of p53 C-terminal 108 residues was built using the SGI INDIGO(2) computer. This structure further expounds the relationship among those biological function domains of p53 C- terminus at three-dimensional level.
Resumo:
Microcoleus vaginatus Gom., the dominant species in biological soil crusts (BSCs) in desert regions, plays a significant role in maintaining the BSC structure and function. The BSC quality is commonly assessed by the chlorophyll a content, thickness, and compressive strength. Here, we have studied the effect of different proportions of M. vaginatus, collected from the Gurbantunggut Desert in northwestern China, on the BSC structure and function under laboratory conditions. We found that when M. vaginatus was absent in the BSC, the BSC coverage, quantified by the percentage of BSC area to total land surface area, was low with a chlorophyll a content of 4.77 x 10(-2) mg g(-1) dry soil, a thickness of 0.86 mm, and a compressive strength of 12.21 Pa. By increasing the percentage of M. vaginatus in the BSC, the BSC coverage, chlorophyll a content, crust thickness, and compressive strength all significantly increased (P < 0.01). The maximum chlorophyll a content (13.12 mg g(-1)dry soil), the highest crust thickness, and the compressive strength (1.48 mm and 36.60 Pa, respectively) occurred when the percentage of inoculated M. vaginatus reached 80% with a complex network of filaments under scanning electron microscope. The BSC quality indicated by the above variables, however, declined when the BSC was composed of pure M. vaginatus (monoculture). In addition, we found that secretion of filaments and polymer, which stick sands together in the BSC, increased remarkably with the increase of the dominant species until the percentage of M. vaginatus reached 80%. Our results suggest that not only the dominant species but also the accompanying taxa are critical for maintaining the structure and functions of the BSC and thus the stability of the BSC ecosystems.
Resumo:
A novel compound was synthesized and characterized by means of elemental analysis, IR and UV spectra, TG, CV and single crystal X-ray diffraction. The compound crystallized in an orthorhombic space group C222 with a=1. 622 4(3) nm, b=3. 498 4(7) nm, c=1. 301 5(3) nm, V=7. 387 (3) nm(3), Z=6, R-1= 0. 037 3, wR(2)=0. 114 0. The Ala (Ala = alanine) molecules were protonated at the amino nitrogen N (1) and the C (2) of Ala group with the terminal oxygen atom O(15), O(14), O(26) and O(27) of the polyoxometalates participating in the hydrogen bond network. The anti-tumor activity of the title compound was estimated against Hela and Pc-3m cancer cells.
Resumo:
In our screening of marine Streptomycetes for bioactive principles, two novel antitumor antibiotics designated as chinikomycins A (2a) and B (2b) were isolated together with manumycin A (1), and their structures were elucidated by a detailed interpretation of their spectra. Chinikomycins A (2a) and B (2b) are chlorine-containing aromatized manumycin derivatives of the type 64-pABA-2 with an unusual para orientation of the side chains. They exhibited antitumor activity against different human cancer cell lines, but were inactive in antiviral, antimicrobial, and phytotoxicity tests.
Resumo:
The title compound, 2-(methoxybenzoyl)-N-phenyt-2-(1,2,4-triazol-1-yl)thioacetamide was synthesized by several reactions from 4-methoxyacetophenone, triazole and phenyl isothiocyanate. The structure was identified by elemental analysis, H-1 NMR, MS and IR. The single crystal structure of 2-(methoxybenzoyl)-N-phenyl-2-(1,2,4-triazol-1-yl)thioacetamide was determined with X-ray diffraction. The preliminary bioassays show that the title compound exhibits weak antifungal activities and plant-growth regulatory activity.
Resumo:
In order to find leading compounds with an excellent fungicidal activity, the tide compound 2-(1,3-dithiolan-2-yl-idene) -1-phenyl-2-(1,2,4-triazol-1-yl) ethanone was synthesized according to the biological isosterism and its structure was confirmed by means of IR, MS, H-1 NMR and elemental analysis. The single crystal structure of the tide compound was determined by X-ray diffraction. The preliminary biological test shows that the synthesized compound exhibits some biological activities.
Resumo:
Four novel triazole compounds containing thioamide group were designed and synthesized by using triazole, phenyl isothiocyanate and aryl ethyl ketone as raw material. Their structures were conformed by elemental analysis, H-1 NMR, IR and MS spectra. The crystal structure of 1-[1-anilinothiocarbonyl-1-(4-fluorobenzoyl)methyl]-1,2,4-trizole has been determined by X-ray diffraction analysis. The preliminary bioassays have shown that the title compounds exhibit certain antifungal activity.
Resumo:
The title compound, N'-(4-methoxybenzylidene)-2-(1H-1,2,4-triazol-1-yl)acetohydrazide, was synthesized and its structure was confirmed by means of IR, MS,H-1 NMR and elemental analysis. The single crystal structure of the title compound was determined by X-ray diffraction. The preliminary biological test shows that the synthesized compound has a low antifungal activity.