996 resultados para Beiminghe Iron Mine
Resumo:
In this paper, a generic and flexible optimisation methodology is developed to represent, model, solve and analyse the iron ore supply chain system by integrating of iron ore shipment, stockpiles and railing within a whole system. As a result, an integrated train-stockpile-ship timetable is created and optimised for improving efficiency of overall supply chain system. The proposed methodology provides better decision making on how to significantly improve rolling stock utilisation with the best cost-effectiveness ratio. Based on extensive computational experiments and analysis, insightful and quantitative advices are suggested for iron ore mine industry practitioners. The proposed methodology contributes to the sustainability of the environment by reducing pollution due to better utilisation of transportation resources and fuel.
Resumo:
Successive alkalinity producing systems (SAPSs) are widely used for treating acid mine drainage (AMD) and alleviating clogging commonly occurring in limestone systems due to an amorphous ferric precipitate. In this study, iron dust, bone char, micrite and their admixtures were used to treat arseniccontaining AMD. A particular interest was devoted to arsenic removal performance, mineralogical constraints on arsenic retention ability and permeability variation during column experiment for 140 days. The results showed that the sequence of the arsenic removal capacity was as follows: bone char > micrite > iron dust. The combination of 20% v/v iron dust and 80% v/v bone char/micrite columns can achieve better hydraulic conductivity and phosphorus-retention capacity than single micrite and bone char columns. The addition of iron dust created reductive environment and resulted in the transformation of coating material from colloidal phase to secondary mineral phase, such as green rust and phosphoerrite, which obviously ameliorates hydraulic conductivity of systems. The sequential extraction experiments indicated that the stable fractions of arsenic in columns were enhanced with help of iron dust compared to single bone char and micrite columns. A combination of iron dust and micrite/bone char represented a potential SAPS for treating As-containing AMD.
Resumo:
This paper proposes a new multi-resource multi-stage scheduling problem for optimising the open-pit drilling, blasting and excavating operations under equipment capacity constraints. The flow process is analysed based on the real-life data from an Australian iron ore mine site. The objective of the model is to maximise the throughput and minimise the total idle times of equipment at each stage. The following comprehensive mining attributes and constraints have been considered: types of equipment; operating capacities of equipment; ready times of equipment; speeds of equipment; block-sequence-dependent movement times of equipment; equipment-assignment-dependent operation times of blocks; distances between each pair of blocks; due windows of blocks; material properties of blocks; swell factors of blocks; and slope requirements of blocks. It is formulated by mixed integer programming and solved by ILOG-CPLEX optimiser. The proposed model is validated with extensive computational experiments to improve mine production efficiency at the operational level. The model also provides an intelligent decision support tool to account for the availability and usage of equipment units for drilling, blasting and excavating stages.
Resumo:
This paper proposes a new multi-resource multi-stage mine production timetabling problem for optimising the open-pit drilling, blasting and excavating operations under equipment capacity constraints. The flow process is analysed based on the real-life data from an Australian iron ore mine site. The objective of the model is to maximise the throughput and minimise the total idle times of equipment at each stage. The following comprehensive mining attributes and constraints are considered: types of equipment; operating capacities of equipment; ready times of equipment; speeds of equipment; block-sequence-dependent movement times; equipment-assignment-dependent operational times; etc. The model also provides the availability and usage of equipment units at multiple operational stages such as drilling, blasting and excavating stages. The problem is formulated by mixed integer programming and solved by ILOG-CPLEX optimiser. The proposed model is validated with extensive computational experiments to improve mine production efficiency at the operational level.
Resumo:
The utility of rice husk as an adsorbent for metal ions such as iron, zinc and copper from acid mine water was assessed. The adsorption isotherms exhibited Langmuirian behavior and were endothermic in nature. The free energy values for adsorption of the chosen metal ions onto rice husk were found to be highly negative attesting to favorable interaction. Over 99% Fe3+, 98% of Fe2+ and Zn2+ and 95% Cu2+ uptake was achieved from acid mine water, with a concomitant increase in the pH value by two units using rice husk. The remediation studies carried out on acid mine water and simulated acid mine water pretreated with rice husk indicated successful growth of Desulfotomaculum nigrificans (D. nigrificans). The amount of sulphate bioreduction in acid mine water at an initial pH of 5.3 was enhanced by D. nigrificans from 21% to 40% in the presence of rice husk filtrate supplemented with carbon and nitrogen. In simulated acid mine water with fortified husk filtrate, the sulphate reduction was even more extensive, with an enhancement to 73%. Concurrently, almost 90% Fe2+, 89% Zn2+ and 75% Cu2+ bioremoval was attained from simulated acid mine water. Metal adsorption by rice husk was confirmed in desorption experiments in which almost complete removal of metal ions from the rice husk was achieved after two elutions using 1 M HCl. The possible mechanisms of metal ion adsorption onto rice husk and sulphate reduction using D. nigrificans are discussed.
Resumo:
Wastewaters generated during hydraulic fracturing of the Marcellus Shale typically contain high concentrations of salts, naturally occurring radioactive material (NORM), and metals, such as barium, that pose environmental and public health risks upon inadequate treatment and disposal. In addition, fresh water scarcity in dry regions or during periods of drought could limit shale gas development. This paper explores the possibility of using alternative water sources and their impact on NORM levels through blending acid mine drainage (AMD) effluent with recycled hydraulic fracturing flowback fluids (HFFFs). We conducted a series of laboratory experiments in which the chemistry and NORM of different mix proportions of AMD and HFFF were examined after reacting for 48 h. The experimental data combined with geochemical modeling and X-ray diffraction analysis suggest that several ions, including sulfate, iron, barium, strontium, and a large portion of radium (60-100%), precipitated into newly formed solids composed mainly of Sr barite within the first ∼ 10 h of mixing. The results imply that blending AMD and HFFF could be an effective management practice for both remediation of the high NORM in the Marcellus HFFF wastewater and beneficial utilization of AMD that is currently contaminating waterways in northeastern U.S.A.
Resumo:
Arsenic is known to accumulate with iron plaque on macrophyte roots. Three to four years after the Aznalcóllar mine spill (Spain), residual arsenic contamination left in seasonal wetland habitats has been identified in this form by scanning electron microscopy. Total digestion has determined arsenic concentrations in thoroughly washed 'root+plaque' material in excess of 1000 mg kg(-1), and further analysis using X-ray absorption spectroscopy suggests arsenic exists as both arsenate and arsenite. Certain herbivorous species feed on rhizomes and bulbs of macrophytes in a wide range of global environments, and the ecotoxicological impact of consuming arsenic rich iron plaque associated with such food items remains to be quantified. Here, greylag geese which feed on Scirpus maritimus rhizome and bulb material in areas affected by the Aznalcóllar spill are shown to have elevated levels of arsenic in their feces, which may originate from arsenic rich iron plaque.
Resumo:
In April 1998, a holding lagoon containing pyrite ore processing waste rich in arsenic, failed and released 5-6 million m(3) of highly polluting sludge and acidic water. Over 2700 ha of the internationally important Doñana National and Natural Parks were contaminated. The area of Natural Park to sustain the greatest impact was known as the Entremuros. This paper presents 0-5 cm soil monitoring data from the Entremuros, from sampling campaigns 6 and 18 months after the disaster; as well as macrophyte root, rhizome and stem data from samples taken 18 months after the spill. Results show a clear, decreasing, north-south arsenic soil pollution trend, both 6 and 18 months after the spill, and suggest a small reduction in total soil arsenic levels occurred over time; although a significant increase in extractable arsenic is also noted. The two macrophytes (Typha dominguensis and Scirpus maritimus) studied herein are not accumulating arsenic in stem parts, however, accumulation of arsenic on iron plaque on the roots of these plants may be occurring. Further work is recommended in order to determine the ecotoxicological significance of this process in relation to the avian food-chains of Doñana, and elsewhere.
Resumo:
This work describes the synthesis of nanosized metal sulfides and respective SiO2 and/or TiO2 composites in high yield via a straightforward process, under ambient conditions (temperature and pressure), by adding to aqueous metals a nutrient solution containing biologically generated sulfide from sulfate-reducing bacteria (SRB). The nanoparticles‘ (NPs) morphological properties were shown not to be markedly altered by the SRB growth media composition neither by the presence of bacterial cells. We further extended the work carried out, using the effluent of a bioremediation system previously established. The process results in the synthesis of added value products obtained from metal rich effluents, such as Acid Mine Drainage (AMD), when associated with the bioremediation process. Precipitation of metals using sulfide allows for the possibility of selective recovery, as different metal sulfides possess different solubilities. We have evaluated the selective precipitation of CuS, ZnS and FeS as nanosized metal sulfides. Again, we have also tested the precipitation of these metal sulfides in the presence of support structures, such as SiO2. Studies were carried out using both artificial and real solutions in a continuous bioremediation system. We found that this method allowed for a highly selective precipitation of copper and a lower selectivity in the precipitation of zinc and iron, though all metals were efficiently removed (>93% removal). This research has also demonstrated the potential of ZnS-TiO2 nanocomposites as catalysts in the photodegradation of organic pollutants using the cationic dye, Safranin-T, as a model contaminant. The influence of the catalyst amount, initial pH and dye concentration were also evaluated. Finally, the efficiency of the precipitates as catalysts in sunlight mediated photodegradation was investigated, using different volumes of dye-contaminated water (150 mL and 10 L). This work demonstrates that all tested composites have the potential to be used as photocatalysts for the degradation of Safranin-T.
Resumo:
The Ajjanahalli gold mine is spatially associated with a Late Archean craton-scale shear zone in the eastern Chitradurga greenstone belt of the Dharwar craton, India. Gold mineralization is hosted by an similar to100-m-wide antiform in a banded iron formation. Original magnetite and siderite are replaced by a peak metamorphic alteration assemblage of chlorite, stilpnomelane, minnesotaite, sericite, ankerite, arsenopyrite, pyrite, pyrrhotite, and gold at ca. 300degrees to 350degreesC. Elements enriched in the banded iron formation include Ca, Mg, C, S, An, As, Bi. Cu, Sb, Zn, Pb, Se, Ag, and Te, whereas in the wall rocks As, Cu, Zn, Bi, Ag, and An are only slightly enriched. Strontium correlates with CaO, MgO, CO2, and As, which indicates cogenetic formation of arsenopyrite and Mg-Ca carbonates. The greater extent of alteration in the Fe-rich banded iron formation layers than in the wall rock reflects the greater reactivity of the banded iron formation layers. The ore fluids, as interpreted from their isotopic composition (delta(18)O = 6.5-8.5parts per thousand; initial Sr-87/Sr-86 = 0.7068-0.7078), formed by metamorphic devolatilization of deeper levels of the Chitradurga greenstone belt. Arsenopyrite, chalcopyrite, and pyrrhotite have delta(34)S values within a narrow range between 2.1 and 2.7 per mil, consistent with a sulfur source in Chitradurga greenstone belt lithologies. Based on spatial and temporal relationships between mineralization, local structure development, and sinistral strike-slip deformation in the shear zone at the eastern contact of the Chitradurga greenstone belt, we suggest that the Ajjanahalli gold mineralization formed by fluid infiltration into a low strain area within the first-order structure. The ore fluids were transported along this shear zone into relatively shallow crustal levels during lateral terrane accretion and a change from thrust to transcurrent tectonics. Based on this model of fluid flow, exploration should focus on similar low strain areas or potentially connected higher order splays of the first-order shear zone.
Resumo:
The Rio Tinto river in SW Spain is a classic example of acid mine drainage and the focus of an increasing amount of research including environmental geochemistry, extremophile microbiology and Mars-analogue studies. Its 5000-year mining legacy has resulted in a wide range of point inputs including spoil heaps and tunnels draining underground workings. The variety of inputs and importance of the river as a research site make it an ideal location for investigating sulphide oxidation mechanisms at the field scale. Mass balance calculations showed that pyrite oxidation accounts for over 93% of the dissolved sulphate derived from sulphide oxidation in the Rio Tinto point inputs. Oxygen isotopes in water and sulphate were analysed from a variety of drainage sources and displayed delta O-18((SO4-H2O)) values from 3.9 to 13.6 parts per thousand, indicating that different oxidation pathways occurred at different sites within the catchment. The most commonly used approach to interpreting field oxygen isotope data applies water and oxygen fractionation factors derived from laboratory experiments. We demonstrate that this approach cannot explain high delta O-18((SO4-H2O)) values in a manner that is consistent with recent models of pyrite and sulphoxyanion oxidation. In the Rio Tinto, high delta O-18((SO4-H2O)) values (11.2-13.6 parts per thousand) occur in concentrated (Fe = 172-829 mM), low pH (0.88-1.4), ferrous iron (68-91% of total Fe) waters and are most simply explained by a mechanism involving a dissolved sulphite intermediate, sulphite-water oxygen equilibrium exchange and finally sulphite oxidation to sulphate with O-2. In contrast, drainage from large waste blocks of acid volcanic tuff with pyritiferous veins also had low pH (1.7). but had a low delta O-18((SO4-H2O)) value of 4.0 parts per thousand and high concentrations of ferric iron (Fe(III) = 185 mM, total Fe = 186 mM), suggesting a pathway where ferric iron is the primary oxidant, water is the primary source of oxygen in the sulphate and where sulphate is released directly from the pyrite surface. However, problems remain with the sulphite-water oxygen exchange model and recommendations are therefore made for future experiments to refine our understanding of oxygen isotopes in pyrite oxidation. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Bendadaite, ideally Fe(2+)Fe(2)(3+)(AsO(4))(2)(OH)(2 center dot).4H(2)O, is a new member of the arthurite group It was found as a weathering product of arsenopyrite on a single hand specimen from the phosphate pegmatite Bendada. central Portugal (type locality) Co-type locality is the granite pegmatite of La via do Almerindo (Almerindo mine), Linopolis, Divmo das Laranjeiras county, Minas Gerais, Brazil Further localities are the Vein Negra mine, Copiapo province, Chile, mid-East, Bou Azzer district, Morocco, and Para Inferida yard, Fenugu Sibirt mine, Gonnosfanadiga, Medio Campidano Province, Sardinia. Italy Type bendadaite occurs as blackish green to dark brownish tufts (<0 1 mm long) and flattened radiating aggregates. in intimate association with an intermediate member of the scorodite-mansfieldite series It is monoclinic. space group P2(l/c). with a = 10 239(3) angstrom. b = 9 713(2) angstrom, c = 5 552(2) angstrom. beta = 94 11(2)degrees. = 550 7(2) angstrom(3). Z = 2 Electron-microprobe analysis yielded (wt %). CaO 0 04, MnO 0 03. CuO 006, ZnO 004. Fe(2)O(3) (total) 43 92, Al(2)O(3) 115. SnO(2) 0 10, As(2)O(5) 43 27. P(2)O(5) 1 86, SO(3) 0.03 The empirical formula is (Fe(0 52)(2+)Fe(0 32)(3+)rectangle(0 16))(Sigma 1 00)(Fe(1 89)(3+)Al(0 11))(Sigma 2 00)(As(1 87)P(0 13))(Sigma 2 00)O(8)(OH)(2 00) 4H(2)O based. CM 2(As,P) and assuming ideal 80, 2(OH), 4H2O and complete occupancy of the ferric on site by Fe(3+) and Al Optically, bendadaite is biaxial, positive, 2V(est) = 85+/-4 degrees, 2V(eale) = 88 degrees, with alpha 1 734(3). 13 1 759(3), 7 1 787(4) Pleochrosim is medium strong X pale reddish brown. Y yellowish brown, Z dark yellowish brown. absorption Z > V > X, optical dispersion weak, r > v. Optical axis plane Is parallel to (010), with X approximately parallel to a and Z nearly parallel to c Bendadaite has vitreous to sub-adamantine luster, is translucent and non-fluorescent It is brittle, shows irregular fracture and a good cleavage parallel to 1010} 3 15 0 10 g/cm(3), 3 193 g/cm3 (for the empirical formula) The five strongest powder diffraction lines [d in angstrom (I)(hkl] are 10 22 (10)(100), 7 036 (8)(110), 4 250 (5)(11 I), 2 865 (4)(311), 4 833 (3)(020,011) The d spacings are very similar to those of its Zn analogue, ojelaite The crystal structure of bendadaite was solved and refined using a crystal from the co-type locality with the composition (Fe(0 95)(2+)rectangle(0 05))(Sigma 1 00)(Fe(1 80)(3+)Al(0 20))Sigma(2 00)(As(1 48)P(0 52))(Sigma 2 00)O(8)) (OH)(2) 4H(2)O (R = 16%) and confirms an arthurite-type atomic arrangement
Leaching of Ni and Cu from mine wastes (tailings and slags) using acid solutions and A. ferrooxidans
Resumo:
The objective of this work is to evaluate the acidic and biological leaching of tailings containing Ni/Cu from a flotation and smelting plant. Acidithiobacillus ferrooxidans, strain LR, was used for bioleaching at pH 1.8 and chemical controls were run parallel to that. The acidic leaching was done within 48 hours at pH 0.5 and 1.0. In the slag inoculated flasks the redox potential was high (600 mV), thus indicating oxidative bacterial activity, however, the obtained results after 15 days showed only around 13% Ni and 8% Cu extractions, which were not different to those of the controls. For the flotation tailings bioleaching extractions were approximately 45% for Ni and 16% for Cu while differing figures were obtained for the chemical controls. These were 30% and 12% respectively. Here we could observe that the presence of bacterial activity led to a higher solubility of Ni. Acid leaching of slag showed higher nickel and copper extractions: 56% and 24% respectively at pH 0.5 and 21% and 11% at pH 1.0. However, the acid consumption was 320 and 150 Kg/ton of slag, respectively, both much higher than in bacterial assays. These results indicated that Ni and Cu solubilization from the slag is acid dependent no matter the redox potential or ferric iron concentration of the leaching solution. For flotation tailings, acid treatment showed extractions of 23% for Ni and 16% for copper at pH 0.5 and 22% and 28%, respectively at pH 1.0. The acid consumption was also higher: 220 and 120 Kg/ton, at pH 0.5 and 1.0, respectively. Based on own findings we could observe that acid leaching is found to be more effective for slag, though the acid consumption is much higher, while for the flotation tailings, bacterial leaching seems to be the best alternative. © (2009) Trans Tech Publications.
Resumo:
This paper presents the classification of 110 copper ore samples from Sossego Mine, based on X-ray diffraction and cluster analysis. The comparison based on the position and the intensity of the diffracted peaks allowed the distinction of seven ore types, whose differences refer to the proportion of major minerals: quartz, feldspar, actinolite, iron oxides, mica and chlorite. There was a strong correlation between the grouping and the location of the samples in Sequeirinho and Sossego orebodies. This relationship is due to different types and intensities of hydrothermal alteration prevailing in each body, which reflect the mineralogical composition and thus the X-ray diffractograms of samples.
Resumo:
Throughout the world, pressures on water resources are increasing, mainly as a result of human activity. Because of their accessibility, groundwater and surface water are the most used reservoirs. The evaluation of the water quality requires the identification of the interconnections among the water reservoirs, natural landscape features, human activities and aquatic health. This study focuses on the estimation of the water pollution linked to two different environmental issues: salt water intrusion and acid mine drainage related to the exploitation of natural resources. Effects of salt water intrusion occurring in the shallow aquifer north of Ravenna (Italy) was analysed through the study of ion- exchange occurring in the area and its variance throughout the year, applying a depth-specific sampling method. In the study area were identified ion exchange, calcite and dolomite precipitation, and gypsum dissolution and sulphate reduction as the main processes controlling the groundwater composition. High concentrations of arsenic detected only at specific depth indicate its connexion with the organic matter. Acid mine drainage effects related to the tin extraction in the Bolivian Altiplano was studied, on water and sediment matrix. Water contamination results strictly dependent on the seasonal variation, on pH and redox conditions. During the dry season the strong evaporation and scarce water flow lead to low pH values, high concentrations of heavy metals in surface waters and precipitation of secondary minerals along the river, which could be released in oxidizing conditions as demonstrated through the sequential extraction analysis. The increase of the water flow during the wet season lead to an increase of pH values and a decrease in heavy metal concentrations, due to dilution effect and, as e.g. for the iron, to precipitation.