472 resultados para Bézier Bernstein, MiniSystem SDL
Resumo:
A series of numerical simulations based on a recurrence-free Vlasov kinetic algorithm presented earlier [Abbasi et al., Phys. Rev. E 84, 036702 (2011)] are reported. Electron-ion plasmas and three-component (electron-ion-dust) dusty, or complex, plasmas are considered, via independent simulations. Considering all plasma components modeled through a kinetic approach, the nonlinear behavior of ionic scale acoustic excitations is investigated. The focus is on Bernstein-Greene-Kruskal (BGK) modes generated during the simulations. In particular, we aim at investigating the parametric dependence of the characteristics of BGK structures, namely of their time periodicity (τ trap) and their amplitude, on the electron-to-ion temperature ratio and on the dust concentration. In electron-ion plasma, an exponential relation between τ trap and the amplitude of BGK modes and the electron-to-ion temperature ratio is observed. It is argued that both characteristics, namely, the periodicity τ trap and amplitude, are also related to the size of the phase-space vortex which is associated with BGK mode creation. In dusty plasmas, BGK modes characteristics appear to depend on the dust particle density linearly
Resumo:
Ce mémoire porte sur la présentation des estimateurs de Bernstein qui sont des alternatives récentes aux différents estimateurs classiques de fonctions de répartition et de densité. Plus précisément, nous étudions leurs différentes propriétés et les comparons à celles de la fonction de répartition empirique et à celles de l'estimateur par la méthode du noyau. Nous déterminons une expression asymptotique des deux premiers moments de l'estimateur de Bernstein pour la fonction de répartition. Comme pour les estimateurs classiques, nous montrons que cet estimateur vérifie la propriété de Chung-Smirnov sous certaines conditions. Nous montrons ensuite que l'estimateur de Bernstein est meilleur que la fonction de répartition empirique en terme d'erreur quadratique moyenne. En s'intéressant au comportement asymptotique des estimateurs de Bernstein, pour un choix convenable du degré du polynôme, nous montrons que ces estimateurs sont asymptotiquement normaux. Des études numériques sur quelques distributions classiques nous permettent de confirmer que les estimateurs de Bernstein peuvent être préférables aux estimateurs classiques.
Resumo:
Resumen tomado de la publicación
Resumo:
Este artículo pretende rendir un homenaje a la obra de este sociólogo de la educación. Se analizan sus trabajos y sus más destacadas aportaciones teóricas enmarcadas en el contexto de las principales corrientes sociológicas, así como sus relaciones con los otros sociólogos relevantes. También se pone de manifiesto la influencia de su pensamiento en España, tanto en los aspectos teóricos como en la política educativa.
Resumo:
Al analizar el pensamiento de Bernstein surgen grandes dificultades de carácter cuantitativo y cualitativo. Así, se analiza la obra de Bernstein con el fin de solucionar estos inconvenientes y de analizar el conjunto de planteamientos bernsteinianos, distinguiendo sus concepciones teóricas y las implicaciones de su teoría, es decir, los análisis que realiza de la escuela, ya que existe un paralelismo radical entre los códigos lingüísticos y los códigos escolares.
Resumo:
Se realiza un análisis crítico e histórico acerca de la postura de Bernstein en su obra, donde se hallan paralelismos en los argumentos avanzados por los estudios posmodernistas y postestructuralistas. Se destaca su reflexión sobre la naturaleza de la relación entre cultura y poder.
Resumo:
Monogr??fico con el t??tulo: 'Mejorar la escuela: perspectivas did??cticas y organizativas'. Resumen basado en el de la publicaci??n
Resumo:
A new identification algorithm is introduced for the Hammerstein model consisting of a nonlinear static function followed by a linear dynamical model. The nonlinear static function is characterised by using the Bezier-Bernstein approximation. The identification method is based on a hybrid scheme including the applications of the inverse of de Casteljau's algorithm, the least squares algorithm and the Gauss-Newton algorithm subject to constraints. The related work and the extension of the proposed algorithm to multi-input multi-output systems are discussed. Numerical examples including systems with some hard nonlinearities are used to illustrate the efficacy of the proposed approach through comparisons with other approaches.
Resumo:
This paper introduces a new neurofuzzy model construction algorithm for nonlinear dynamic systems based upon basis functions that are Bezier-Bernstein polynomial functions. This paper is generalized in that it copes with n-dimensional inputs by utilising an additive decomposition construction to overcome the curse of dimensionality associated with high n. This new construction algorithm also introduces univariate Bezier-Bernstein polynomial functions for the completeness of the generalized procedure. Like the B-spline expansion based neurofuzzy systems, Bezier-Bernstein polynomial function based neurofuzzy networks hold desirable properties such as nonnegativity of the basis functions, unity of support, and interpretability of basis function as fuzzy membership functions, moreover with the additional advantages of structural parsimony and Delaunay input space partition, essentially overcoming the curse of dimensionality associated with conventional fuzzy and RBF networks. This new modeling network is based on additive decomposition approach together with two separate basis function formation approaches for both univariate and bivariate Bezier-Bernstein polynomial functions used in model construction. The overall network weights are then learnt using conventional least squares methods. Numerical examples are included to demonstrate the effectiveness of this new data based modeling approach.
Resumo:
Motivated by a characterization of the complemented subspaces in Banach spaces X isomorphic to their squares X-2, we introduce the concept of P-complemented subspaces in Banach spaces. In this way, the well-known Pelczynski`s decomposition method can be seen as a Schroeder-Bernstein type theorem. Then, we give a complete description of the Schroeder-Bernstein type theorems for this new notion of complementability. By contrast, some very elementary questions on P-complementability are refinements of the Square-Cube Problem closely connected with some Banach spaces introduced by W.T. Gowers and B. Maurey in 1997. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
We first introduce the notion of (p, q, r)-complemented subspaces in Banach spaces, where p, q, r is an element of N. Then, given a couple of triples {(p, q, r), (s, t, u)} in N and putting Lambda = (q + r - p)(t + u - s) - ru, we prove partially the following conjecture: For every pair of Banach spaces X and Y such that X is (p, q, r)-complemented in Y and Y is (s, t, u)-complemented in X, we have that X is isomorphic Y if and only if one of the following conditions holds: (a) Lambda not equal 0, Lambda divides p - q and s - t, p = 1 or q = 1 or s = 1 or t = 1. (b) p = q = s = t = 1 and gcd(r, u) = 1. The case {(2, 1, 1), (2, 1,1)} is the well-known Pelczynski`s decomposition method. Our result leads naturally to some generalizations of the Schroeder-B em stein problem for Banach spaces solved by W.T. Gowers in 1996. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
Let X and Y be Banach spaces isomorphic to complemented subspaces of each other with supplements A and B. In 1996, W. T. Gowers solved the Schroeder-Bernstein (or Cantor-Bernstein) problem for Banach spaces by showing that X is not necessarily isomorphic to Y. In this paper, we obtain a necessary and sufficient condition on the sextuples (p, q, r, s, u, v) in N with p + q >= 1, r + s >= 1 and u, v is an element of N*, to provide that X is isomorphic to Y, whenever these spaces satisfy the following decomposition scheme A(u) similar to X(P) circle plus Y(q) B(v) similar to X(r) circle plus Y(s). Namely, Phi = (p - u)(s - v) - (q + u)(r + v) is different from zero and Phi divides p + q and r + s. These sextuples are called Cantor-Bernstein sextuples for Banach spaces. The simplest case (1, 0, 0, 1, 1, 1) indicates the well-known Pelczynski`s decomposition method in Banach space. On the other hand, by interchanging some Banach spaces in the above decomposition scheme, refinements of the Schroeder-Bernstein problem become evident.