881 resultados para Automated segmentation
Resumo:
This paper presents an ITK implementation for exportingthe contours of the automated segmentation results toDICOM-RT Structure Set format. The âeurooeradiotherapystructure setâeuro (RTSTRUCT) object of the DICOM standard isused for the transfer of patient structures and relateddata, between the devices found within and outside theradiotherapy department. It mainly contains theinformation of regions of interest (ROIs) and points ofinterest (E.g. dose reference points). In many cases,rather than manually drawing these ROIs on the CT images,one can indeed benefit from the automated segmentationalgorithms already implemented in ITK. But at present, itis not possible to export the ROIs obtained from ITK toRTSTRUCT format. In order to bridge this gap, we havedeveloped a framework for exporting contour data toRTSTRUCT. We provide here the complete implementation ofRTSTRUCT exporter and present the details of the pipelineused. Results on a 3-D CT image of the Head and Neck(H&N) region are presented.
Resumo:
PURPOSE. We previously demonstrated that most eyes have regionally variable extensions of Bruch's membrane (BM) inside the clinically identified disc margin (DM) that are clinically and photographically invisible. We studied the impact of these findings on DM- and BM opening (BMO)-derived neuroretinal rim parameters. METHODS. Disc stereo-photography and spectral domain optical coherence tomography (SD-OCT, 24 radial B-scans centered on the optic nerve head) were performed on 30 glaucoma patients and 10 age-matched controls. Photographs were colocalized to SD-OCT data such that the DM and BMO could be visualized in each B-scan. Three parameters were computed: (1) DM-horizontal rim width (HRW), the distance between the DM and internal limiting membrane (ILM) along the DM reference plane; (2) BMO-HRW, the distance between BMO and ILM along the BMO reference plane; and (3) BMO-minimum rim width (MRW), the minimum distance between BMO and ILM. Rank-order correlations of sectors ranked by rim width and spatial concordance measured as angular distances between equivalently ranked sectors were derived. RESULTS. The average DM position was external to BMO in all quadrants, except inferotemporally. There were significant sectoral differences among all three rim parameters. DM- HRW and BMO-HRW sector ranks were better correlated (median rho = 0.84) than DM- HRW and BMO-MRW (median rho = 0.55), or BMO-HRW and BMO-MRW (median rho = 0.60) ranks. Sectors with the narrowest BMO-MRW were infrequently the same as those with the narrowest DM-HRW or BMO-HRW. CONCLUSIONS. BMO-MRW quantifies the neuroretinal rim from a true anatomical outer border and accounts for its variable trajectory at the point of measurement. (Invest Ophthalmol Vis Sci. 2012;53:1852-1860) DOI:10.1167/iovs.11-9309
Resumo:
Aneurysm diameter measurement is quick and easy, but suffers from the pitfalls of being "too rough and ready". When semi-automated segmentation took 7-10 minutes to estimate volume, it was not a practical tool for busy, routine clinical practice. Today, the availability of automatic segmentation in seconds is bound to make volume measurement, along with 3D ultrasonography, the tools of the future. There can be no debate.
Resumo:
Postmortem computed tomography (pmCT) is increasingly applied in forensic medicine as a documentation and diagnostic tool. The present study investigated if pmCT data can be used to estimate the corpse weight. In 50 forensic cases, pmCT examinations were performed prior to autopsy and the pmCT data were used to determine the body volume using an automated segmentation tool. PmCT was performed within 48 h postmortem. The body weights assessed prior to autopsy and the body volumes assessed using the pmCT data were used to calculate individual multiplication factors. The mean postmortem multiplication factor for the study cases was 1.07 g/ml. Using this factor, the body weight may be estimated retrospectively when necessary. Severe artifact causing foreign bodies within the corpses limit the use of pmCT data for body weight estimations.
Resumo:
El presente trabajo tuvo como objetivo evaluar la existencia de la relación entre la atrofia cortical difusa objetivada por neuroimagenes cerebrales y desempeños cognitivos determinados mediante la aplicación de pruebas neuropsicológicas que evalúan memoria de trabajo, razonamiento simbólico verbal y memoria anterógrada declarativa. Participaron 114 sujetos reclutados en el Hospital Universitario Mayor Méderi de la ciudad de Bogotá mediante muestreo de conveniencia. Los resultados arrojaron diferencias significativas entre los dos grupos (pacientes con diagnóstico de atrofia cortical difusa y pacientes con neuroimagenes interpretadas como dentro de los límites normales) en todas las pruebas neuropsicológicas aplicadas. Respecto a las variables demográficas se pudo observar que el grado de escolaridad contribuye como factor neuroprotector de un posible deterioro cognitivo. Tales hallazgos son importantes para determinar protocoles tempranos de detección de posible instalación de enfermedades neurodegenerativas primarias.
Resumo:
A fully-automated 3D image analysis method is proposed to segment lung nodules in HRCT. A specific gray-level mathematical morphology operator, the SMDC-connection cost, acting in the 3D space of the thorax volume is defined in order to discriminate lung nodules from other dense (vascular) structures. Applied to clinical data concerning patients with pulmonary carcinoma, the proposed method detects isolated, juxtavascular and peripheral nodules with sizes ranging from 2 to 20 mm diameter. The segmentation accuracy was objectively evaluated on real and simulated nodules. The method showed a sensitivity and a specificity ranging from 85% to 97% and from 90% to 98%, respectively.
Resumo:
Vertebroplasty is a minimally invasive procedure with many benefits; however, the procedure is not without risks and potential complications, of which leakage of the cement out of the vertebral body and into the surrounding tissues is one of the most serious. Cement can leak into the spinal canal, venous system, soft tissues, lungs and intradiscal space, causing serious neurological complications, tissue necrosis or pulmonary embolism. We present a method for automatic segmentation and tracking of bone cement during vertebroplasty procedures, as a first step towards developing a warning system to avoid cement leakage outside the vertebral body. We show that by using active contours based on level sets the shape of the injected cement can be accurately detected. The model has been improved for segmentation as proposed in our previous work by including a term that restricts the level set function to the vertebral body. The method has been applied to a set of real intra-operative X-ray images and the results show that the algorithm can successfully detect different shapes with blurred and not well-defined boundaries, where the classical active contours segmentation is not applicable. The method has been positively evaluated by physicians.
Resumo:
OBJECTIVES: To determine the accuracy of automated vessel-segmentation software for vessel-diameter measurements based on three-dimensional contrast-enhanced magnetic resonance angiography (3D-MRA). METHOD: In 10 patients with high-grade carotid stenosis, automated measurements of both carotid arteries were obtained with 3D-MRA by two independent investigators and compared with manual measurements obtained by digital subtraction angiography (DSA) and 2D maximum-intensity projection (2D-MIP) based on MRA and duplex ultrasonography (US). In 42 patients undergoing carotid endarterectomy (CEA), intraoperative measurements (IOP) were compared with postoperative 3D-MRA and US. RESULTS: Mean interoperator variability was 8% for measurements by DSA and 11% by 2D-MIP, but there was no interoperator variability with the automated 3D-MRA analysis. Good correlations were found between DSA (standard of reference), manual 2D-MIP (rP=0.6) and automated 3D-MRA (rP=0.8). Excellent correlations were found between IOP, 3D-MRA (rP=0.93) and US (rP=0.83). CONCLUSION: Automated 3D-MRA-based vessel segmentation and quantification result in accurate measurements of extracerebral-vessel dimensions.
Resumo:
OBJECTIVE: To develop a novel application of a tool for semi-automatic volume segmentation and adapt it for analysis of fetal cardiac cavities and vessels from heart volume datasets. METHODS: We studied retrospectively virtual cardiac volume cycles obtained with spatiotemporal image correlation (STIC) from six fetuses with postnatally confirmed diagnoses: four with normal hearts between 19 and 29 completed gestational weeks, one with d-transposition of the great arteries and one with hypoplastic left heart syndrome. The volumes were analyzed offline using a commercially available segmentation algorithm designed for ovarian folliculometry. Using this software, individual 'cavities' in a static volume are selected and assigned individual colors in cross-sections and in 3D-rendered views, and their dimensions (diameters and volumes) can be calculated. RESULTS: Individual segments of fetal cardiac cavities could be separated, adjacent segments merged and the resulting electronic casts studied in their spatial context. Volume measurements could also be performed. Exemplary images and interactive videoclips showing the segmented digital casts were generated. CONCLUSION: The approach presented here is an important step towards an automated fetal volume echocardiogram. It has the potential both to help in obtaining a correct structural diagnosis, and to generate exemplary visual displays of cardiac anatomy in normal and structurally abnormal cases for consultation and teaching.
Resumo:
INTRODUCTION Native-MR angiography (N-MRA) is considered an imaging alternative to contrast enhanced MR angiography (CE-MRA) for patients with renal insufficiency. Lower intraluminal contrast in N-MRA often leads to failure of the segmentation process in commercial algorithms. This study introduces an in-house 3D model-based segmentation approach used to compare both sequences by automatic 3D lumen segmentation, allowing for evaluation of differences of aortic lumen diameters as well as differences in length comparing both acquisition techniques at every possible location. METHODS AND MATERIALS Sixteen healthy volunteers underwent 1.5-T-MR Angiography (MRA). For each volunteer, two different MR sequences were performed, CE-MRA: gradient echo Turbo FLASH sequence and N-MRA: respiratory-and-cardiac-gated, T2-weighted 3D SSFP. Datasets were segmented using a 3D model-based ellipse-fitting approach with a single seed point placed manually above the celiac trunk. The segmented volumes were manually cropped from left subclavian artery to celiac trunk to avoid error due to side branches. Diameters, volumes and centerline length were computed for intraindividual comparison. For statistical analysis the Wilcoxon-Signed-Ranked-Test was used. RESULTS Average centerline length obtained based on N-MRA was 239.0±23.4 mm compared to 238.6±23.5 mm for CE-MRA without significant difference (P=0.877). Average maximum diameter obtained based on N-MRA was 25.7±3.3 mm compared to 24.1±3.2 mm for CE-MRA (P<0.001). In agreement with the difference in diameters, volumes obtained based on N-MRA (100.1±35.4 cm(3)) were consistently and significantly larger compared to CE-MRA (89.2±30.0 cm(3)) (P<0.001). CONCLUSIONS 3D morphometry shows highly similar centerline lengths for N-MRA and CE-MRA, but systematically higher diameters and volumes for N-MRA.
Resumo:
BACKGROUND A precise detection of volume change allows for better estimating the biological behavior of the lung nodules. Postprocessing tools with automated detection, segmentation, and volumetric analysis of lung nodules may expedite radiological processes and give additional confidence to the radiologists. PURPOSE To compare two different postprocessing software algorithms (LMS Lung, Median Technologies; LungCARE®, Siemens) in CT volumetric measurement and to analyze the effect of soft (B30) and hard reconstruction filter (B70) on automated volume measurement. MATERIAL AND METHODS Between January 2010 and April 2010, 45 patients with a total of 113 pulmonary nodules were included. The CT exam was performed on a 64-row multidetector CT scanner (Somatom Sensation, Siemens, Erlangen, Germany) with the following parameters: collimation, 24x1.2 mm; pitch, 1.15; voltage, 120 kVp; reference tube current-time, 100 mAs. Automated volumetric measurement of each lung nodule was performed with the two different postprocessing algorithms based on two reconstruction filters (B30 and B70). The average relative volume measurement difference (VME%) and the limits of agreement between two methods were used for comparison. RESULTS At soft reconstruction filters the LMS system produced mean nodule volumes that were 34.1% (P < 0.0001) larger than those by LungCARE® system. The VME% was 42.2% with a limit of agreement between -53.9% and 138.4%.The volume measurement with soft filters (B30) was significantly larger than with hard filters (B70); 11.2% for LMS and 1.6% for LungCARE®, respectively (both with P < 0.05). LMS measured greater volumes with both filters, 13.6% for soft and 3.8% for hard filters, respectively (P < 0.01 and P > 0.05). CONCLUSION There is a substantial inter-software (LMS/LungCARE®) as well as intra-software variability (B30/B70) in lung nodule volume measurement; therefore, it is mandatory to use the same equipment with the same reconstruction filter for the follow-up of lung nodule volume.
Resumo:
This paper proposed an automated 3D lumbar intervertebral disc (IVD) segmentation strategy from MRI data. Starting from two user supplied landmarks, the geometrical parameters of all lumbar vertebral bodies and intervertebral discs are automatically extracted from a mid-sagittal slice using a graphical model based approach. After that, a three-dimensional (3D) variable-radius soft tube model of the lumbar spine column is built to guide the 3D disc segmentation. The disc segmentation is achieved as a multi-kernel diffeomorphic registration between a 3D template of the disc and the observed MRI data. Experiments on 15 patient data sets showed the robustness and the accuracy of the proposed algorithm.
Resumo:
This paper proposed an automated three-dimensional (3D) lumbar intervertebral disc (IVD) segmentation strategy from Magnetic Resonance Imaging (MRI) data. Starting from two user supplied landmarks, the geometrical parameters of all lumbar vertebral bodies and intervertebral discs are automatically extracted from a mid-sagittal slice using a graphical model based template matching approach. Based on the estimated two-dimensional (2D) geometrical parameters, a 3D variable-radius soft tube model of the lumbar spine column is built by model fitting to the 3D data volume. Taking the geometrical information from the 3D lumbar spine column as constraints and segmentation initialization, the disc segmentation is achieved by a multi-kernel diffeomorphic registration between a 3D template of the disc and the observed MRI data. Experiments on 15 patient data sets showed the robustness and the accuracy of the proposed algorithm.