985 resultados para Asphalt Permeability
Resumo:
Magnetic energy losses and permeability have been investigated in laboratory prepared and commercial Mn-Zn sintered ferrites from quasi-static conditions up to 10 MHz. The mechanisms leading to energy dissipation, either due to domain wall displacements or magnetization rotations, have been quantitatively assessed and their respective roles have been clarified. Domain wall processes dissipate energy by pure relaxation effects, while rotations display resonant absorption of energy over a broad range of frequencies. Their specific contributions to the permeability and its frequency dispersion are thus identified and separately evaluated. It is shown that eddy currents are always too weak to appreciably contribute to the losses over the whole investigated frequency range and that rotations are the dominant magnetization and loss producing mechanisms on approaching the MHz range, as predicted by the Landau-Lifshitz-Gilbert equation with distributed anisotropy fields. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The water diffusion attributable to concentration gradients is among the main mechanisms of water transport into the asphalt mixture. The transport of small molecules through polymeric materials is a very complex process, and no single model provides a complete explanation because of the small molecule`s complex internal structure. The objective of this study was to experimentally determine the diffusion of water in different fine aggregate mixtures (FAM) using simple gravimetric sorption measurements. For the purposes of measuring the diffusivity of water, FAMs were regarded as a representative homogenous volume of the hot-mix asphalt (HMA). Fick`s second law is generally used to model diffusion driven by concentration gradients in different materials. The concept of the dual mode diffusion was investigated for FAM cylindrical samples. Although FAM samples have three components (asphalt binder, aggregates, and air voids), the dual mode was an attempt to represent the diffusion process by only two stages that occur simultaneously: (1) the water molecules are completely mobile, and (2) the water molecules are partially mobile. The combination of three asphalt binders and two aggregates selected from the Strategic Highway Research Program`s (SHRP) Materials Reference Library (MRL) were evaluated at room temperature [23.9 degrees C (75 degrees F)] and at 37.8 degrees C (100 degrees F). The results show that moisture uptake and diffusivity of water through FAM is dependent on the type of aggregate and asphalt binder. At room temperature, the rank order of diffusivity and moisture uptake for the three binders was the same regardless of the type of aggregate. However, this rank order changed at higher temperatures, suggesting that at elevated temperatures different binders may be undergoing a different level of change in the free volume. DOI: 10.1061/(ASCE)MT.1943-5533.0000190. (C) 2011 American Society of Civil Engineers.
Resumo:
Phenothiazines (PTZ) are drugs widely used in the treatment of schizophrenia. Trifluoperazine, a piperazinic PTZ derivative, has been described as inhibitor of the mitochondrial permeability transition (MPT). We reported previously the antioxidant activity of thioridazine at relatively low concentrations associated to the inhibition of the MPT (Brit. J. Pharmacol., 2002;136:136-142). In this study, it was investigated the induction of MPT by PTZ derivatives at concentrations higher than 10 mu M focusing on the molecular mechanism involved. PTZ promoted a dose-response mitochondrial swelling accompanied by mitochondrial transmembrane potential dissipation and calcium release, being thioridazine the most potent derivative. PTZ-induced MPT was partially inhibited by CsA or Mg(2+) and completely abolished by the abstraction of calcium. The oxidation of reduced thiol group of mitochondrial membrane proteins by PTZ was upstream the VIP opening and it was not sufficient to promote the opening of PTP that only occurred when calcium was present in the mitochondrial matrix. EPR experiments using DMPO as spin trapping excluded the participation of reactive oxygen species on the PTZ-induced MPT. Since 117 give rise to cation radicals chemically by the action of peroxidases and cyanide inhibited the PTZ-induced swelling, we propose that VIZ bury in the inner mitochondrial membrane and the chemically generated 117 cation radicals modify specific thiol groups that in the presence of Ca(2+) result in MPT associated to cytochrome c release. These findings contribute for the understanding of mechanisms of MET induction and may have implications for the cell death induced by PTZ. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Mitochondrial membrane carriers containing proline and cysteine, such as adenine nucleotide translocase (ANT), are potential targets of cyclophilin D (CyP-D) and potential Ca(2+)-induced permeability transition pore (PTP) components or regulators; CyP-D, a mitochondrial peptidyl-prolyl cis-trans isomerase, is the probable target of the PTP inhibitor cyclosporine A (CsA). In the present study, the impact of proline isomerization (from trans to cis) on the mitochondrial membrane carriers containing proline and cysteine was addressed using ANT as model. For this purpose, two different approaches were used: (i) Molecular dynamic (MD) analysis of ANT-Cys(56) relative mobility and (ii) light scattering techniques employing rat liver isolated mitochondria to assess both Ca(2+)-induced ANT conformational change and mitochondrial swelling. ANT-Pro(61) isomerization increased ANT-Cys(56) relative mobility and, moreover, desensitized ANT to the prevention of this effect by ADP. In addition, Ca(2+) induced ANT ""c"" conformation and opened PTP; while the first effect was fully inhibited, the second was only attenuated by CsA or ADP. Atractyloside (ATR), in turn, stabilized Ca(2+)-induced ANT ""c"" conformation, rendering the ANT conformational change and PTP opening less sensitive to the inhibition by CsA or ADP. These results suggest that Ca(2+) induces the ANT ""c"" conformation, apparently associated with PTP opening, but requires the CyP-D peptidyl-prolyl cis-trans isomerase activity for sustaining both effects.
Resumo:
Monocrotaline (MCT) is a pyrrolizidine alkaloid present in plants of the genus Crotalaria that causes cytotoxicity and genotoxicity in animals and humans. It is well established that the toxicity of MCT results from its hepatic bioactivation to dehydromonocrotaline (DHM), an alkylating agent, but the exact mechanism of action remains unknown. In a previous study, we demonstrated DHM`s inhibition of mitochondrial NADH-dehydrogenase activity at micromolar concentrations, which is an effect associated with a significant reduction in ATP synthesis. As a follow-up study, we have evaluated the ability of DHM to induce mitochondrial permeability transition (MPT) and its associated processes in isolated rat liver mitochondria. In the presence of 10 mu M Ca(2+), DHM (50-250 mu M) elicited MPT in a concentration-dependent, but cyclosporine A-independent manner, as assessed by mitochondrial swelling, which is associated with mitochondrial Ca(2+) efflux and cytochrome c release. DHM (50-250 mu M) did not cause hydrogen peroxide accumulation but did deplete endogenous glutathione and NAD(P)H, while oxidizing protein thiol groups. These results potentially indicate the involvement of mitochondria, via apoptosis, in the well-documented cytotoxicity of monocrotaline. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The oxidation of critical cysteines/related thiols of adenine nucleotide translocase (ANT) is believed to be an important event of the Ca(2+)-induced mitochondrial permeability transition (MPT), a process mediated by a cyclosporine A/ADP-sensitive permeability transition pores (PTP) opening. We addressed the ANT-Cys(56) relative mobility status resulting from the interaction of ANT/surrounding cardiolipins with Ca(2+) and/or ADP by means of computational chemistry analysis (Molecular Interaction Fields and Molecular Dynamics studies), supported by classic mitochondrial swelling assays. The following events were predicted: (i) Ca(2+) interacts preferentially with the ANT surrounding cardiolipins bound to the H4 helix of translocase, (ii) weakens the cardiolipins/ANT interactions and (iii) destabilizes the initial ANT-Cys(56) residue increasing its relative mobility. The binding of ADP that stabilizes the conformation ""m"" of ANT and/or cardiolipin, respectively to H5 and H4 helices, could stabilize their contacts with the short helix h56 that includes Cys(56), accounting for reducing its relative mobility. The results suggest that Ca(2+) binding to adenine nucleotide translocase (ANT)-surrounding cardiolipins in c-state of the translocase enhances (ANT)-Cys(56) relative mobility and that this may constitute a potential critical step of Ca(2+)-induced PTP opening. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The present study aimed to evaluate the role of nitric oxide (NO) on hyperpnea-induced bronchoconstriction (HIB) and airway microvascular hyperpermeability (AMP). Sixty-four guinea pigs were anesthetized, tracheotonnized, cannulated, and connected to animal ventilator to obtain pulmonary baseline respiratory system resistance (Rrs). Animals were then submitted to 5 minutes hyperpnea and Rrs was evaluated during 15 minutes after hyperpnea. AMP was evaluated by Evans blue dye (25 mg/kg) extravasation in airway tissues. Constitutive and inductible NO was evaluated by pretreating animals with N(G)-nitro-1-arginine methyl ester (I-NAME) (50 mg/kg), aminoguadinine (AG) (50 mg/kg), and I-arginine (100 mg/kg) and exhaled NO (NOex) was evaluated before and after drug administration and hyperpnea. The results show that I-NAME potentiated (57%) HIB and this effect was totally reversed by I-arginine pretreatment, whereas AG did not have effect on HIB. I-NAME decreased basal AMP (48%), but neither I-NAME nor AG had any effect on hyperpnea-induced AMP. NOex levels were decreased by 50% with I-NAME, effect that was reversed by I-arginine treatment. These results suggest that constitutive but not inducible NO could have a bronchoprotective effect on HIB in guinea pigs. The authors also observed that neither constitutive nor inducible NO seems to have any effect on hyperpnea-induced AMP.
Resumo:
The type of surface used for running can influence the load that the locomotor apparatus will absorb and the load distribution could be related to the incidence of chronic injuries. As there is no consensus on how the locomotor apparatus adapts to loads originating from running Surfaces with different compliance, the objective of this study was to investigate how loads are distributed over the plantar surface while running on natural grass and on a rigid surface-asphalt. Forty-four adult runners with 4 3 years of running experience were evaluated while running at 12 km/h for 40 m wearing standardised running shoes and Pedar insoles (Novel). Peak pressure, contact time and contact area were measured in six regions: lateral, central and medial rearfoot, midfoot, lateral and media] forefoot. The Surfaces and regions were compared by three ANOVAS (2 x 6). Asphalt and natural grass were statistically different in all variables. Higher peak pressures were observed on asphalt at the central (p < 0.001) [grass: 303.8(66.7) kPa; asphalt: 342.3(76.3) kPa] and lateral rearfoot (p < 0.001) [grass: 312.7(75.8) kPa: asphalt: 350.9(98.3) kPa] and lateral forefoot (p < 0.001) [grass: 221.5(42.9) kPa asphalt: 245.3(55.5) kPa]. For natural grass, contact time and contact area were significantly greater at the central rearfoot (p < 0.001). These results suggest that natural grass may be a Surface that provokes lighter loads on the rearfoot and forefoot in recreational runners. (C) 2008 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Resumo:
In order to investigate the differential ALCAM, ICAM-1 and VCAM-1 adhesion molecules mRNA expression and the blood-brain barrier (BBB) permeability in C57BL/6 and BALB/c mice in Toxoplasma gondii infection, animals were infected with ME-49 strain. It was observed higher ALCAM on day 9 and VCAM-1 expression on days 9 and 14 of infection in the central nervous system (CNS) of C57BL/6 compared to BALB/c mice. The expression of ICAM-1 was high and similar in the CNS of both lineages of infected mice. In addition, C57BL/6 presented higher BBB permeability and higher IFN-gamma and iNOS expression in the CNS compared to BALB/c mice. The CNS of C578L/6 mice presented elevated tissue pathology and parasitism. In conclusion, our data suggest that the higher adhesion molecules expression and higher BBB permeability contributed to the major inflammatory cell infiltration into the CNS of C57BL/6 mice that was not efficient to control the parasite. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Increases in vascular permeability and angiogenesis are crucial events to wound repair, tumoral growth and revascularization of tissues submitted to ischemia. An increased vascular permeability allows a variety of cytokines and growth factors to reach the damaged tissue. Nevertheless, the angiogenesis supply tissues with a wide variety of nutrients and is also important to metabolites clearance. It has been suggested that the natural latex from Hevea brasiliensis showed wound healing properties and angiogenic activity. Thus, the purpose of this work was to characterize its angiogenic activity and its effects on vascular permeability and wound healing. The serum fraction of the latex was separated from the rubber with reduction of the pH. The activity of the dialyzed serum fraction on the vascular permeability injected in subcutaneous tissue was assayed according Mile`s method. The angiogenic activity was determined using a chick embryo chorioallantoic membrane assay and its effects on the wound-healing process was determined by the rabbit ear dermal ulcer model. The serum fraction showed evident angiogenic effect and it was effective in enhancing vascular permeability. In dermal ulcers, this material significantly accelerated wound healing. Moreover, the serum fraction boiled and treated with proteases lost these activities. These results are in accordance with the enhancement of wound healing observed in clinical trials carried out with a biomembrane prepared with the same natural latex. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
Purpose: Bone maintenance after mandibular reconstruction with autogenous iliac crest may be disappointing due to extensive resorption in the long term. The potential of the guided-bone regeneration (GBR) technique to enhance the healing process in segmental defects lacks comprehensive scientific documentation. This study aimed to investigate the influence of polylactide membrane permeability on the fate of iliac bone graft (BG) used to treat mandibular segmental defects. Materials and Methods: Unilateral 10-mm-wide segmental defects were created through the mandibles of 34 mongrel dogs. All defects were mechanically stabilized, and the animals were divided into 6 treatment groups: control, BG alone, microporous membrane (poly L/DL-lactide 80/20%) (Mi); Mi plus BG; microporous laser-perforated (15 cm(2) ratio) membrane (Mip), and Mip plus BG. Calcein fluorochrome was injected intravenously at 3 months, and animal euthanasia was carried out at 6 months postoperatively. Results: Histomorphometry showed that BG protected by Mip was consistently related to larger amounts of bone compared with other groups (P <= .0001). No difference was found between defects treated with Mip alone and BG alone. Mi alone rendered the least bone area and reduced the amount of grafted bone to control levels. Data from bone labeling indicated that the bone formation process was incipient in the BG group at 3 months postoperatively regardless of whether or not it was covered by membrane. In contrast, GBR with Mip tended to enhance bone formation activity at 3 months. Conclusions: The use of Mip alone could be a useful alternative to BG. The combination of Mip membrane and BG efficiently delivered increased bone amounts in segmental defects compared with other treatment modalities. (C) 2008 American Association of Oral and Maxillofacial Surgeons.
Resumo:
This study describes increased sarcolemmal permeability and myofilamentar damage that occur together with lipid peroxidation and protein nitration in the myocardium in severe sepsis induced by cecal ligation and puncture. Male C57BL/6 mice were submitted to moderate and severe septic injury and sham operation. Using light and laser confocal microscopy, diffuse foci of myocytolysis associated with focal disruption of the actin/myosin contractile apparatus could be seen in hearts with severe septic injury. The myocardial expressions of the sarcomeric proteins myosin and actin were downregulated by both severe and moderate injuries. The detection of albumin staining in the cytoplasm of myocytes to evaluate sarcolemmal permeability provided evidence of severe and mild injury of the plasma membrane in hearts with severe and moderate septic injury, respectively. The administration of a superoxide scavenger caused marked reduction of sarcolemmal permeability, indicating the involvement of free radicals in its genesis. On electron microscopy, these changes were seen to correspond to spread blocks of a few myocytes with fragmentation and dissolution of myofibrils, intracellular edema, and, occasionally, rupture of the sarcolemma. In addition, oxidative damage to lipids, using anti-4-hydroxynonenal, an indicator of oxidative stress and disruption of plasma membrane lipids, and to proteins, using antinitrotyrosine, a stable biomarker of peroxynitrite-mediated protein nitration, was demonstrated. These findings make plausible the hypothesis that increased sarcolemmal permeability might be a primary event in myocardial injury in severe sepsis possibly due to oxidative damage to lipids and proteins that could precede phenotypic changes that characterize a septic cardiomyopathy.
Resumo:
Inflammatory responses have been described as occurring after exposure to some latex materials. In this study pro-inflammatory activity in the latex of Cryptostegia grandiflora was investigated. The soluble proteins of the latex (CgLP) were isolated from the whole latex and evaluated by in vivo assays. CgLP induced strong inflammatory activity mediated by neutrophil migration, enlarging vascular permeability and increasing myeloperoxidase activity locally in rats. CgLP-induced inflammation was observed in peritonitis, paw edema and air push models. In addition, CgLP caused hyperemia in a healing model. The peritonitis effect was lost when CgLP was previously boiled suggesting the involvement of proinflammatory proteins. Thioglycollate increased the neutrophil migration induced by CgLP, but not by fMLP Mast cell depletion provoked by 40/80 compound did not modify the course of inflammation triggered by CgLP, being similar to fMLP, which suggested that neutrophil migration was induced by direct mechanism mediated by macrophages. Neutrophil migration stimulated by CgLP was strongly inhibited by Dexamethasone and to a lesser extent by Thalidomide, indicating the involvement of cytokines in mediating neutrophil infiltration. Celecoxib and Indomethacin were inhibitory suggesting the involvement of prostaglandins. Cimetidine was effective only in the initial phase of edema. PCA 4248 was ineffective. It is concluded that the latex of C. grandiflora is a potent inflammatory fluid, and also that laticifer proteins may be implicated in this process. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Objective. The objective of this study was to assess the influence of different final irrigating solutions on dentin permeability and smear layer removal using the same specimens and relate the results obtained. Study design. Forty anterior human teeth were instrumented and divided into 4 groups (n = 10) at the final rinse step, according to the irrigant used: G I (control) - 1% NaOCl; G II - 17% EDTA; G III - 17% EDTAT; and G IV - Biopure MTAD. The canals were filled with 0.5% methylene blue and maintained in bottles for 48 hours. The roots were transversally split in coronal, middle, and apical fragments. The specimens were photographed and analyzed regarding dye penetration. The fragments were then axially split and prepared for SEM. The photomicrographs were analyzed and qualified by scores. Results. Only the EDTA-T group exhibited statistical difference in which the apical third had less dentin permeability (P < .05). When a decalcifying agent was used, smear layer was removed, which did not happen in the NaOCl group. Regarding smear layer removal, differences were found only in the EDTA group in which the apical third presented more smear layer (P < .05). No correlation was found for both studies (r = 0.4207). Conclusions. There was not an even relationship between the results from both studies, which inferes that higher or lower dentinal permeability does not necessarily correspond to a higher or lower amount of smear layer. The analysis of dentin permeability and smear layer removal was shown to be a feasible procedure using the same specimens. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009; 107: e47-e51)