978 resultados para Al2O3


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work demonstrates the role of defects generated during rapid thermal annealing of pulsed laser deposited ZnO/Al2O3 multilayer nanostructures in presence of vacuum at different temperatures (Ta) (500–900 C) on their electrical conductance and optical characteristics. Photoluminescence (PL) emissions show the stronger green emission at Ta 600 C and violet–blue emission at TaP800 C, and are attributed to oxygen vacancies and zinc related defects (zinc vacancies and interstitials) respectively. Current–voltage (I–V) characteristics of nanostructures with rich oxygen vacancies and zinc related defects display the electroforming free resistive switching (RS) characteristics. Nanostructures with rich oxygen vacancies exhibit conventional and stable RS behavior with high and low resistance states (HRS/LRS) ratio 104 during the retention test. Besides, the dominant conduction mechanism of HRS and LRS is explained by trap-controlled-space-charge limited conduction mechanism, where the oxygen vacancies act as traps. On the other hand, nanostructures with rich zinc related defects show a diode-like RS behavior. The rectifying ratio is found to be sensitive on the zinc interstitials concentration. It is assumed that the rectifying behavior is due to the electrically formed interface layer ZnAl2O4 at the Zn defects rich ZnO crystals – Al2O3 x interface and the switching behavior is attributed to the electron trapping/de-trapping process at zinc vacancies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The adsorption of As(V) onto alpha -Al2O3 was investigated at 25, 50 and 70 degreesC using batch adsorption experiments. Results indicate that As is strongly adsorbed at low pH and gets progressively released to the fluid with increasing pH above 7. At any pH, increasing temperature favors aqueous species of As over surface species. Surface complexation constants were determined at the experimental temperatures by fitting the adsorption data. Adsorption reactions were then converted to semi-isocolumbic reactions, i.e, reactions with balanced like-charged aqueous species. Intrinsic adsorption constants of semi-isocolumbic reactions change linearly when plotted against inverse temperature, suggesting that the heat capacity of these reactions remains constant over the temperature range considered. This permitted thermodynamic parameters of intrinsic surface complexation constants to be determined. Changes in surface complexation constants result in a change in the surface speciation with increasing temperature. This change is similar to the one observed for aqueous species, i.e. increasing temperature favors less negatively charged species below a pH of 9 and more negatively charged species above a pH of 10. Comparison with the stability of As surface complexes with Fe suggests that surface complexes with Al are more stable. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents a detailed study of the leaching behavior of deactivated hydrotreating catalysts (CoMo, NiMo/Al2O3) in presence of oxalate and NH4+ ions in various media. The yield of metals recovery may be optimized by adjusting several experimental parameters (time, temperature, etc). Leaching is limited by physical factors (diffusional effects caused by coke) and by the existence of silicate/spinel-like species which are poorly soluble in leaching solutions. Coke may be eliminated by an oxidation step at temperatures between 300-400ºC. Above 400ºC, solubilization of Ni and Co is drastically reduced. 50-90% wt of sulphate species and 15-30% wt of phosphate ions are solubilized during leaching. Silicon (as SiO2) is not solubilized. The best Ni-Co-Mo recoveries are in the 70-90% wt range; Fe recovery may be quantitative, whereas Al leaching may be lower than 5% wt.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The kinetic parameters for the CO oxidation reaction using copper/alumina-modified ceria as catalysts were determined. The catalysts with different concentrations of the metals were prepared using impregnation methods. In addition, the reduction-oxidation behaviour of the catalysts were investigated by temperature-programmed reduction. The activity results show that the mechanism for CO oxidation is bifunctional : oxygen is activated on the anionic vacancies of ceria surface, while carbon monoxide is adsorbed preferentially on the higher oxidation copper site. Therefore, the reaction occurs on the interfacial active centers. Temperatures-programmed Reduction patterns show a higher disperdion when cerium oxide is present.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mo-promoted Ni/Al2O3 catalysts for the methane steam reforming reaction were studied in this work. The Ni/Al2O3 catalysts were prepared by precipitation and molibdenum was added by impregnation up to 2%wt. The solids were tested using a micro-reactor under two H2Ov/C conditions and were characterized by ICP-OES, XRD, N2 adsoption, H2 chemisorption and TPR. NiO and NiAl2O4 phases were observed and the metallic area decreased with the increase of the Mo content. From the catalytic tests high stability was verified for H2Ov/C=4.0. On the other hand, only the catalyst containing 0,05% Mo stayed stable during 30 hours of the test at H2Ov/C=2.0.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The carbon dioxide reforming of methane was carried out over nickel catalysts supported on the gamma-Al2O3/CeO2 system prepared by wet impregnation. With the increase of the CeO2 weight in the catalyst, a higher stability was observed in the catalytic activity, together with an excellent resistance to carbon deposition and a better Ni dispersion. The catalysts were characterized by means of surface area measurements, TPR, H2 chemisorption, XRD, SEM, EDX, XPS and TEM. An interaction between Ni and CeO2 was observed to the Ni/CeO2 sample after activation in a H2 atmosphere above 300 ºC. Such behavior has a significantly influence on the catalytic activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Postprint (published version)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of cobalt catalysts to produce hydrogen from ethanol is the goal of this investigation. Co/Al2O3 catalysts were prepared by impregnation and characterized by atomic absorption, nitrogen adsorption, X-ray diffraction, Raman spectroscopy, temperature programmed reduction and carbon analysis. The catalysts contained Co3O4 oxide and Co3+ and Co2+ species interacting with alumina. The cobalt load affects the crystal size and the crystalline structure and higher Co loads influence the reaction mechanism, changing the selectivity of the catalysts, decreasing the amount of CO produced and avoiding the formation of products catalyzed by the support. The ethanol conversion was 50-70% with 10-<1% of CO in the hydrogen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methane, the main constituent of natural gas (> 85%), is employed in large scale as an energy source (thermoelectric power plants, automobiles, etc). However, significant quantities of this gas contribute to the greenhouse effect. The catalytic combustion of methane can minimize these emissions. Palladium is one of the metals that shows the highest activity, depending on the different active forms of the metal. In this article, we focus on the influence of particle size and pretreatment on the catalytic performance of palladium in the methane combustion reaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cu/Ni/gamma-Al2O3 catalysts were prepared by an impregnation method with 2.5 or 5% wt of copper and 5 or 15% wt of nickel and applied in ethanol steam reforming. The catalysts were characterized by atomic absorption spectrophotometry, X-ray diffraction, temperature programmed reduction with hydrogen and nitrogen adsorption. The samples showed low crystallinity, with the presence of CuO and NiO, both as crystallites and in dispersed phase, as well as of NiO-Al2O3. The catalytic tests carried out at 400 ºC, with a 3:1 water/ethanol molar ratio, indicated the 5Cu/5Ni/Al2O3 catalyst as the most active for hydrogen production, with a hydrogen yield of 77% and ethanol conversion of 98%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Characterization of the thermal decomposition of polyurethane (PUR) foams was performed by Fourier-transformed infrared (FT-IR) spectroscopy and thermogravimetric analysis (TGA). Three main weight loss paths were observed by TGA, the residue being lower than 3 wt.% for 3 different PUR foams analyzed. FT-IR spectra indicated CO2, CO, NH3 and isocyanides as main decomposition products. PUR foams of different cell sizes were immersed in a slurry of the parent glass ceramic of composition Li2O-ZrO2-SiO2-Al 2O3 (LZSA) and submitted to heat treatment. The LZSA cellular glass ceramics obtained after sintering and crystallization resembled the original morphology of the PUR foams.