911 resultados para Adaptive Finite Element Methods


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We deal with a class of elliptic eigenvalue problems (EVPs) on a rectangle Ω ⊂ R^2 , with periodic or semi–periodic boundary conditions (BCs) on ∂Ω. First, for both types of EVPs, we pass to a proper variational formulation which is shown to fit into the general framework of abstract EVPs for symmetric, bounded, strongly coercive bilinear forms in Hilbert spaces, see, e.g., [13, §6.2]. Next, we consider finite element methods (FEMs) without and with numerical quadrature. The aim of the paper is to show that well–known error estimates, established for the finite element approximation of elliptic EVPs with classical BCs, hold for the present types of EVPs too. Some attention is also paid to the computational aspects of the resulting algebraic EVP. Finally, the analysis is illustrated by two non-trivial numerical examples, the exact eigenpairs of which can be determined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article we address the question of efficiently solving the algebraic linear system of equations arising from the discretization of a symmetric, elliptic boundary value problem using hp-version discontinuous Galerkin finite element methods. In particular, we introduce a class of domain decomposition preconditioners based on the Schwarz framework, and prove bounds on the condition number of the resulting iteration operators. Numerical results confirming the theoretical estimates are also presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose the use of a highly-accurate three-dimensional (3D) fully automatic hp-adaptive finite element method (FEM) for the characterization of rectangular waveguide discontinuities. These discontinuities are either the unavoidable result of mechanical/electrical transitions or deliberately introduced in order to perform certain electrical functions in modern communication systems. The proposed numerical method combines the geometrical flexibility of finite elements with an accuracy that is often superior to that provided by semi-analytical methods. It supports anisotropic refinements on irregular meshes with hanging nodes, and isoparametric elements. It makes use of hexahedral elements compatible with high-order H(curl)H(curl) discretizations. The 3D hp-adaptive FEM is applied for the first time to solve a wide range of 3D waveguide discontinuity problems of microwave communication systems in which exponential convergence of the error is observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, we develop the a priori and a posteriori error analysis of hp-version interior penalty discontinuous Galerkin finite element methods for strongly monotone quasi-Newtonian fluid flows in a bounded Lipschitz domain Ω ⊂ ℝd, d = 2, 3. In the latter case, computable upper and lower bounds on the error are derived in terms of a natural energy norm, which are explicit in the local mesh size and local polynomial degree of the approximating finite element method. A series of numerical experiments illustrate the performance of the proposed a posteriori error indicators within an automatic hp-adaptive refinement algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we develop an adaptive procedure for the numerical solution of general, semilinear elliptic problems with possible singular perturbations. Our approach combines both prediction-type adaptive Newton methods and a linear adaptive finite element discretization (based on a robust a posteriori error analysis), thereby leading to a fully adaptive Newton–Galerkin scheme. Numerical experiments underline the robustness and reliability of the proposed approach for various examples

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a fully automatic goal-oriented hp-adaptive finite element strategy for open region electromagnetic problems (radiation and scattering) is presented. The methodology leads to exponential rates of convergence in terms of an upper bound of an user-prescribed quantity of interest. Thus, the adaptivity may be guided to provide an optimal error, not globally for the field in the whole finite element domain, but for specific parameters of engineering interest. For instance, the error on the numerical computation of the S-parameters of an antenna array, the field radiated by an antenna, or the Radar Cross Section on given directions, can be minimized. The efficiency of the approach is illustrated with several numerical simulations with two dimensional problem domains. Results include the comparison with the previously developed energy-norm based hp-adaptivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

* This work has been supported by the Office of Naval Research Contract Nr. N0014-91-J1343, the Army Research Office Contract Nr. DAAD 19-02-1-0028, the National Science Foundation grants DMS-0221642 and DMS-0200665, the Deutsche Forschungsgemeinschaft grant SFB 401, the IHP Network “Breaking Complexity” funded by the European Commission and the Alexan- der von Humboldt Foundation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An alternative approach for the analysis of arbitrarily curved shells is developed in this paper based on the idea of initial deformations. By `alternative` we mean that neither differential geometry nor the concept of degeneration is invoked here to describe the shell surface. We begin with a flat reference configuration for the shell mid-surface, after which the initial (curved) geometry is mapped as a stress-free deformation from the plane position. The actual motion of the shell takes place only after this initial mapping. In contrast to classical works in the literature, this strategy enables the use of only orthogonal frames within the theory and therefore objects such as Christoffel symbols, the second fundamental form or three-dimensional degenerated solids do not enter the formulation. Furthermore, the issue of physical components of tensors does not appear. Another important aspect (but not exclusive of our scheme) is the possibility to describe exactly the initial geometry. The model is kinematically exact, encompasses finite strains in a totally consistent manner and is here discretized under the light of the finite element method (although implementation via mesh-free techniques is also possible). Assessment is made by means of several numerical simulations. Copyright (C) 2009 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a progressive asymptotic approach procedure is presented for solving the steady-state Horton-Rogers-Lapwood problem in a fluid-saturated porous medium. The Horton-Rogers-Lapwood problem possesses a bifurcation and, therefore, makes the direct use of conventional finite element methods difficult. Even if the Rayleigh number is high enough to drive the occurrence of natural convection in a fluid-saturated porous medium, the conventional methods will often produce a trivial non-convective solution. This difficulty can be overcome using the progressive asymptotic approach procedure associated with the finite element method. The method considers a series of modified Horton-Rogers-Lapwood problems in which gravity is assumed to tilt a small angle away from vertical. The main idea behind the progressive asymptotic approach procedure is that through solving a sequence of such modified problems with decreasing tilt, an accurate non-zero velocity solution to the Horton-Rogers-Lapwood problem can be obtained. This solution provides a very good initial prediction for the solution to the original Horton-Rogers-Lapwood problem so that the non-zero velocity solution can be successfully obtained when the tilted angle is set to zero. Comparison of numerical solutions with analytical ones to a benchmark problem of any rectangular geometry has demonstrated the usefulness of the present progressive asymptotic approach procedure. Finally, the procedure has been used to investigate the effect of basin shapes on natural convection of pore-fluid in a porous medium. (C) 1997 by John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper shows the process of the virtual production development of the mechanical connection between the top leaf of a dual composite leaf spring system to a shackle using finite element methods. The commercial FEA package MSC/MARC has been used for the analysis. In the original design the joint was based on a closed eye-end. Full scale testing results showed that this configuration achieved the vertical proof load of 150 kN and 1 million cycles of fatigue load. However, a problem with delamination occurred at the interface between the fibres going around the eye and the main leaf body. To overcome this problem, a second design was tried using transverse bandages of woven glass fibre reinforced tape to wrap the section that is prone to delaminate. In this case, the maximum interlaminar shear stress was reduced by a certain amount but it was still higher than the material’s shear strength. Based on the fact that, even with delamination, the top leaf spring still sustained the maximum static and fatigue loads required, the third design was proposed with an open eye-end, eliminating altogether the interface where the maximum shear stress occurs. The maximum shear stress predicted by FEA is reduced significantly and a safety factor of around 2 has been obtained. Thus, a successful and safe design has been achieved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years nonpolynomial finite element methods have received increasing attention for the efficient solution of wave problems. As with their close cousin the method of particular solutions, high efficiency comes from using solutions to the Helmholtz equation as basis functions. We present and analyze such a method for the scattering of two-dimensional scalar waves from a polygonal domain that achieves exponential convergence purely by increasing the number of basis functions in each element. Key ingredients are the use of basis functions that capture the singularities at corners and the representation of the scattered field towards infinity by a combination of fundamental solutions. The solution is obtained by minimizing a least-squares functional, which we discretize in such a way that a matrix least-squares problem is obtained. We give computable exponential bounds on the rate of convergence of the least-squares functional that are in very good agreement with the observed numerical convergence. Challenging numerical examples, including a nonconvex polygon with several corner singularities, and a cavity domain, are solved to around 10 digits of accuracy with a few seconds of CPU time. The examples are implemented concisely with MPSpack, a MATLAB toolbox for wave computations with nonpolynomial basis functions, developed by the authors. A code example is included.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A procedure to model optical diffused-channel waveguides is presented in this work. The dielectric waveguides present anisotropic refractive indexes which are calculated from the proton concentration. The proton concentration inside the channel is calculated by the anisotropic 2D-linear diffusion equation and converted to the refractive indexes using mathematical relations obtained from experimental data, the arbitrary refractive index profile is modeled by a. nodal expansion in the base functions. The TE and TM-like propagation properties (effective index) and the electromagnetic fields for well-annealed proton-exchanged (APE) LiNbO3 waveguides are computed by the finite element method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A MATHEMATICA notebook to compute the elements of the matrices which arise in the solution of the Helmholtz equation by the finite element method (nodal approximation) for tetrahedral elements of any approximation order is presented. The results of the notebook enable a fast computational implementation of finite element codes for high order simplex 3D elements reducing the overheads due to implementation and test of the complex mathematical expressions obtained from the analytical integrations. These matrices can be used in a large number of applications related to physical phenomena described by the Poisson, Laplace and Schrodinger equations with anisotropic physical properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents the application of a scalar finite element formulation for Ex (TE-like) modes in anisotropic planar and channel waveguides with diagonal permittivity tensor, diffused in both transversal directions. This extended formulation considers explicitly both the variations of the refractive index and their spatial derivates inside of each finite element. Dispersion curves for Ex modes in planar and channel waveguides are shown, and the results compared with solutions obtained by other formulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main feature of partition of unity methods such as the generalized or extended finite element method is their ability of utilizing a priori knowledge about the solution of a problem in the form of enrichment functions. However, analytical derivation of enrichment functions with good approximation properties is mostly limited to two-dimensional linear problems. This paper presents a procedure to numerically generate proper enrichment functions for three-dimensional problems with confined plasticity where plastic evolution is gradual. This procedure involves the solution of boundary value problems around local regions exhibiting nonlinear behavior and the enrichment of the global solution space with the local solutions through the partition of unity method framework. This approach can produce accurate nonlinear solutions with a reduced computational cost compared to standard finite element methods since computationally intensive nonlinear iterations can be performed on coarse global meshes after the creation of enrichment functions properly describing localized nonlinear behavior. Several three-dimensional nonlinear problems based on the rate-independent J (2) plasticity theory with isotropic hardening are solved using the proposed procedure to demonstrate its robustness, accuracy and computational efficiency.