998 resultados para 510 Matemáticas
Resumo:
La matemática actual se caracteriza por el predominio del álgebra, y se habla a menudo de la algebrización de todas las ramas de la tradicional matemática. Esta tendencia se origina en los trabajos geniales de Galois para dar solución definitiva al problema de hallar las raíces de las ecuaciones algebraicas, de donde surgió la noción de grupo. Más tarde apareció la teoría abstracta de grupos y otras teorías, como las de cuaternios y de matrices. Además tanto los cuaternios como las matrices contradicen la ley conmutativa de la multiplicación de números, según la cual el orden de los factores no altera el producto, como en el caso de las geometrías no euclidianas, se llegó por esta vía a un grado de abstracción mayor de las operaciones aritméticas y algebraicas, que se definen hoy únicamente por los axiomas que se desee que cumplan. En la actualidad el Álgebra Abstracta juega un papel muy importante en el estudio de la Matemática ya que en ella se involucran diversidad de contenidos lo que se centra en el estudio de conjuntos, estructura de grupo, categorías, anillos, módulos en donde estos se dividen en las importantes ramas de Campos y Teoría de Galois, Álgebra lineal, Anillos conmutativos y módulos y estructura de anillos entre otros. Toda esta teoría contribuye al estudio del álgebra homológica dentro de la cual se prende desarrollar la Teoría de multiplicidad y en base a esta poder demostrar la fórmula límite de Samuel.
Resumo:
Los Grupos Libres son una área de la Teoría de Grupos, que no es profundizada en la Licenciatura en Matemática, esto, debido al bajo contenido en algebra que posee el pensum, razón por la cual, el propósito del trabajo es mostrarse como una opción para una materia electiva. Con toda la investigación y desarrollo realizado, se ha creado un trabajo apto para que un estudiante pueda leerlo y comprenderlo por sí solo, ya que posee todas las herramientas básicas para su completo entendimiento. Se ha descrito paso a paso, el proceso realizado para la demostración de los teoremas, lemas, proposiciones y corolarios, al igual que los ejercicios, que ayudan a la comprensión de los capítulos. Algunos de los ejemplos presentados son de utilidad para la demostración de los teoremas más importantes. Estos resultados relevantes fueron los objetivos trazados al inicio de la investigación. Dentro del proceso realizado durante el desarrollo del tema está, la intensa búsqueda bibliográfica en libros, revistas y artículos en internet, del cual se escogió lo más importante que permitió obtener como resultado los capítulos con la información principal, en la que se fueron desarrollando los teoremas, corolarios, lemas y proposiciones, a esto se le agregaron los diferentes tipos de ejercicios resueltos. Finalizando con la presentación de los resultados.
Resumo:
El estudio de la teoría sobre de las cuádricas con Geometría Proyectiva, aplicando conceptos, definiciones, y teoremas fundamentales, los cuales nos llevan a comprender la importancia de su aplicación en las diferentes ramas de la matemática y sus representaciones gráficas. Es por ello que en este trabajo se trata de desarrollar temas que están enfocados a comprender las cuádricas con geometría proyectiva y su importancia. Se desarrollará la noción de proyección, donde se dan definiciones importantes sobre la proyección, así como una descripción de que sucede si se agregan los puntos ideales o puntos al infinito, y que estos sean los centros de proyección, además el enriquecimiento que aportan estos nuevos conceptos. Se desarrollarán los conceptos de coordenadas homogéneas, que es fundamental para la comprensión de los puntos ideales o puntos al infinito, que facilitarán el manejo algebraico en el estudio del espacio proyectivo, el cual también incluye puntos complejos, así como la representación del espacio en diferentes dimensiones, y cambio de estructura de coordenadas, subespacios, hiperplanos y dualidad. Los más importantes teoremas de la Geometría Euclidiana, desarrollado con la Geometría Proyectiva, que es el Teorema de Desargues, y algunos resultados importantes adicionales. También se hará una introducción a proyectividades, razón cruzada, y transformaciones lineales. Se refleja la riqueza que tienen las cuádricas aplicando los conceptos de la geometría proyectiva, así como sus diferentes representaciones. Es importante mencionar que en el pasado el ser humano se ha visto favorecido por tales representaciones, facilitando la comprensión de su entorno, aunque muchas veces no esté consciente de los aspectos matemáticos que están involucrados.
Resumo:
El estudio de los sistemas dinámicos es un campo importante de la investigación matemática actual. Estos pueden ser clasificados como sistemas dinámicos clásicos y sistemas dinámicos 100% discretos. A su vez los sistemas dinámicos clásicos se pueden dividir en sistemas dinámicos discretos y sistemas dinámicos continuos. El estudio de los sistemas dinámicos clásicos involucra herramientas de cálculo y geometría diferencial. En cambio los sistemas dinámicos 100% discretos se requiere utilizar herramientas de teoría de números, álgebra, combinatoria y teoría de grafos. Históricamente, los sistemas dinámicos llamados finitos sistemas dinámicos discretos no han recibido en modo alguna atención como la han tenido los sistemas continuos. Hay por supuesto muchas razones para esto, una de las cuales es el uso exitoso de las Ecuaciones Diferenciales Ordinarias (EDO’s) y Ecuaciones Diferenciales Parciales (EDP’s) como herramientas analíticas y descriptivas en las ciencias y sus aplicaciones.
Resumo:
La teoría básica de las Transformaciones de Möbius, es decir similitudes (traslación, rotación y dilatación). Por la definición de las transformaciones de Möbius, se puede decir que las similitudes, que son las transformaciones de la forma S(z) = az + b , son casos particulares de las transformaciones de Möbius. Es por ello que se estudiará detenidamente desde un enfoque analítico y geométrico cada una de ellas, así como también la inversión compleja, la inversión geométrica y la proyección estereográfica. Se estudiarán las principales propiedades de las transformaciones de Möbius, entre estas que las transformaciones de Möbius son transformaciones conformes y que dejan invariante la razón cruzada, así como también una propiedad que es muy importante para su clasificación; toda transformación de Möbius no degenerada tiene a lo sumo dos puntos fijos, a menos que sea la identidad. Se clasificarán las Transformaciones de Möbius según sus puntos fijos, ilustrando el comportamiento analítico y geométrico de cada clase resultante: parabólicas, hiperbólicas, loxodrómicas y elípticas. Así mismo, se estudiará otra clasificación de transformaciones Möbius de acuerdo a la traza de la matriz que determina cada transformación de Möbius.
Resumo:
Las matemáticas, como muchas otras áreas del pensamiento, han sufrido en el tercio central del siglo XX el impacto de la corriente filosófica estructuralista. Esta tendía a desplazar el centro de atención hacia los problemas de fundamentación por una parte, y por otra subrayaba la importancia de las estructuras abstractas como la de conjunto, grupo u otras, que se presentan en diversas áreas de las matemáticas. En general la corriente estructuralista impregna a las matemáticas de los métodos del álgebra y es compañera inevitable de una tendencia hacia la abstracción. El estructuralismo ha estado lejos de ser un factor determinante en el desarrollo de la producción matemática en el último siglo, ya que el volumen ingente de investigación volcada hacia las aplicaciones ha pesado de forma decisiva en el resultado global. Sin embargo, es en el ámbito de la enseñanza de las matemáticas donde la influencia del estructuralismo ha sido más profunda, penetrando en los programas a todos los niveles educativos y provocando que al estudiar matemáticas, los estudiantes se queden con la impresión de que no hay nada nuevo en matemáticas desde Euclides o Pitágoras, es decir, desde hace más de 2000 años. Con un poco de suerte, algunos se cree que las matemáticas dejaron de desarrollarse después de la creación del cálculo diferencial e integral (hace unos 300 años), en cambio no tenemos la misma impresión sobre otras ciencias como física, química o biología. La geometría fractal, cuyos primeros desarrollos datan de finales del siglo XIX, ha recibido durante los últimos treinta años, desde la publicación de los trabajos de Mandelbrot, una atención y un auge crecientes. Lejos de ser simplemente una herramienta de generación de impresionantes paisajes virtuales, la geometría fractal viene avalada por la teoría geométrica de la medida y por innumerables aplicaciones en ciencias tan dispares como la Física, la Química, la Economía o, incluso, la Informática.
Resumo:
En esta tesis se aborda el problema de obtener una versión certificada de un resultado fundamental en álgebra homológica, conocido como “Desarrollo de las álgebras y complejos de Koszul”. Las principales motivaciones de nuestro trabajo consisten en aumentar nuestro conocimiento sobre la naturaleza del álgebra homológica y topología algebraica de dicho resultado matemático, así como evaluar las distintas posibilidades que ofrecen los complejos de Koszul y álgebras de Koszul para demostrar teoremas en álgebra homológica, y a la vez las aplicaciones en álgebra homológica.
Resumo:
En el presente trabajo se plantea la relación entre el Álgebra Conmutativa y la Topología, desarrollando una topología particular sobre el conjunto de todos los ideales primos de un anillo conmutativo cualquiera. Y haciendo un estudio del espectro primo del anillo. Para ello hacemos uso tanto de las nociones de Álgebra como las de Topología. Luego se estudia el subespacio maximal del espectro primo para ver la relación que hay entre un espacio topológico compacto Hausdorff y el subespacio maximal del anillo de todas las funciones continuas reales sobre dicho espacio.
Resumo:
La Estadística o Matemática Actuarial es la ciencia que proporciona las herramientas necesarias para el estudio de ciertas actividades económicas que llevan a cabo las compañías de seguros. Estas actividades aparecen ligadas al término riesgo, habitual en los escenarios actuariales. Por riesgo se entenderá cualquier suceso que pueda ocurrir y que suponga una pérdida, generalmente cuantificable en términos económicos. La clasificación más simple es la que distingue entre seguros no vida y seguros vida. Los primeros, denominados también seguros generales, cubren en su totalidad los seguros que habitualmente se contratan: seguro de automóviles, de accidentes, contra incendios, contra robos, hogar, etc. Por otro lado un contrato de vida se establece entre una empresa aseguradora y una persona, el asegurado, bajo el que la aseguradora se compromete a pagar a la muerte del asegurado una suma fija al o los beneficiaros designados por el mismo. Se denomina asegurado a la persona física o jurídica titular del bien o interés asegurado que está expuesto al riesgo. Un siniestro es un suceso que produce un daño previsto en el contrato de seguro y que da lugar al cumplimiento de las obligaciones contraídas por la aseguradora mediante la reposición del bien o la indemnización al asegurado. De acuerdo a lo anterior, este trabajo pretende realizar un estudio exhaustivo y comprensivo del análisis de la Estadística Actuarial, en donde se abordará el estudio de un modelo compuesto para el cálculo de prima, también se abordará el modelo de riesgo individual y el modelo no compuesto.
Resumo:
506 p.
Resumo:
Se aborda la utilización didáctica de nuevas tecnologías como agente motivador, tanto para el profesorado como el alumnado, para permitir una mejor atención a la diversidad y mejora de los rendimientos de los alumnos.
Resumo:
El objetivo general de esta investigación es analizar el contenido de las matemáticas básicas bajo los lineamientos de bloques programáticos y de los conocimientos que tienen los estudiantes cuando ingresan al primer semestre de la Facultad de Contaduría de la Universidad de la Salle.
Resumo:
Resumen basado en el de la publicación
Resumo:
El frijol es uno de los cultivos mas importantes en Nicaragua. Datos estadísticos indican que este cultivo ocupa el segundo lugar en importancia como alimento básico y el quinto lugar en cuanto al valor nutricional. Durante los últimos años se han obtenido bajos rendimientos y para 70-71 se obtuvo un rendimiento promedio de 537.2 kilogramos por hectárea (5). Como se puede observar el rendimiento promedio nacional es muy bajo. Para incrementar este rendimiento ademas de sembrar con variedades mejoradas se debe hacer necesario buscar los niveles mas adecuados de Fertilización. Se ha observado en la zona de Masatepe una aparente deficiencia de ciertos elementos menores y en especial del Zinc manifestándose con síntomas de necrosis general y deformaciones semejantes a rosetas en las yemas foliar en el cultivo de frijol (13). Este ensayo se llevo a efecto el 4 de octubre de 1973 en la Estación Regional de Diversificación Agrícola Campos Azules. El objetivo de este trabajo fue evaluar el efecto del Nitrógeno, Fósforo y Zinc respectivamente. En la evaluación de los datos de rendimiento se empleo el diseño Guadalupe y Bloque al azar con dos repeticiones. De acuerdo a los resultados para altura de planta, el efecto de los tratamientos fue estadisticamente significativo al nivel de 1 por ciento de probabilidad correspondiendo las mayores alturas para las dosis de 75-125-9, 75-150-9 y 150-150-18 kg/ha, de N-P-Zn respectivamente. El análisis de numero de vainas por planta muestra diferencias significativas entre tratamientos lo mismo que para el rendimiento de grano siendo los niveles adecuados para rendimiento en la zona de Masatepe el 150-150-0 y 75-75-0 kg/ha, de N-P-Zn con 1 101 y 1 044 kg/ha respectivamente.
Resumo:
Debido a la juventud de las ciencias económicas la discusión sobre la forma de utilizar las matemáticas en ellas permanece todavía abierta. En este artículo se tratara de responder a las cuestiones del "por qué" y, a la sin duda más actual, del "cómo" de la utilización de las matemáticas superiores en la economía.