466 resultados para 1121
Resumo:
The anisotropic pore structure and elasticity of cancellous bone cause wave speeds and attenuation in cancellous bone to vary with angle. Previously published predictions of the variation in wave speed with angle are reviewed. Predictions that allow tortuosity to be angle dependent but assume isotropic elasticity compare well with available data on wave speeds at large angles but less well for small angles near the normal to the trabeculae. Claims for predictions that only include angle-dependence in elasticity are found to be misleading. Audio-frequency data obtained at audio-frequencies in air-filled bone replicas are used to derive an empirical expression for the angle-and porosity-dependence of tortuosity. Predictions that allow for either angle dependent tortuosity or angle dependent elasticity or both are compared with existing data for all angles and porosities.
Resumo:
Secondary tasks such as cell phone calls or interaction with automated speech dialog systems (SDSs) increase the driver’s cognitive load as well as the probability of driving errors. This study analyzes speech production variations due to cognitive load and emotional state of drivers in real driving conditions. Speech samples were acquired from 24 female and 17 male subjects (approximately 8.5 h of data) while talking to a co-driver and communicating with two automated call centers, with emotional states (neutral, negative) and the number of necessary SDS query repetitions also labeled. A consistent shift in a number of speech production parameters (pitch, first format center frequency, spectral center of gravity, spectral energy spread, and duration of voiced segments) was observed when comparing SDS interaction against co-driver interaction; further increases were observed when considering negative emotion segments and the number of requested SDS query repetitions. A mel frequency cepstral coefficient based Gaussian mixture classifier trained on 10 male and 10 female sessions provided 91% accuracy in the open test set task of distinguishing co-driver interactions from SDS interactions, suggesting—together with the acoustic analysis—that it is possible to monitor the level of driver distraction directly from their speech.
Resumo:
In this paper a generic decoupled imaged-based control scheme for calibrated cameras obeying the unified projection model is proposed. The proposed decoupled scheme is based on the surface of object projections onto the unit sphere. Such features are invariant to rotational motions. This allows the control of translational motion independently from the rotational motion. Finally, the proposed results are validated with experiments using a classical perspective camera as well as a fisheye camera mounted on a 6 dofs robot platform.
Resumo:
Magnesium minerals are important for the understanding of the concept of geosequestration. One method of studying the hydrated hydroxy magnesium carbonate minerals is through vibrational spectroscopy. A combination of Raman and infrared spectroscopy has been used to study the mineral hydromagnesite. An intense band is observed at 1121 cm-1 attributed CO32- ν1 symmetric stretching mode. A series of infrared bands at 1387, 1413, 1474 cm-1 are assigned to the CO32- ν3 antisymmetric stretching modes. The CO32- ν3 antisymmetric stretching vibrations are extremely weak in the Raman spectrum and are observed at 1404, 1451, 1490 and 1520 cm-1. A series of Raman bands at 708, 716, 728, 758 cm-1 are assigned to the CO32- ν2 in-plane bending mode. The Raman spectrum in the OH stretching region is characterised by bands at 3416, 3516 and 3447 cm-1. In the infrared spectrum a broad band is found at 2940 cm-1 assigned to water stretching vibrations. Infrared bands at 3430, 3446, 3511, 2648 and 3685 cm-1 are attributed to MgOH stretching modes.
Resumo:
The structural, optical, and gas-sensing properties of spray pyrolysis deposited Cu doped ZnO thin films were investigated. Gas response of the undoped and doped films to N02 (oxidizing) gas shows an increase and decrease in resistance, respectively, indicating p-type conduction in doped samples. The UV-Vis spectra of the films show decrease in the bandgap with increasing Cu concentration in ZnO. The observed p-type conductivity is attributed to the holes generated by incorporated Cu atoms on Zn sites in ZnO thin films. The X-ray diffraction spectra showed that samples are polycrystalline with the hexagonal wurtzite structure and increasing the concentration of Cu caused a decrease in the intensity of the dominant (002) peak. The surface morphology of films was studied by scanning electron microscopy and the presence of Cu was also confirmed by X-ray photoelectron spectroscopy. Seebeck effect measurements were utilized to confirm the p-type conduction of Cu doped ZnO thin films. Copyright © 2009 American Scientific Publishers All rights reserved.
Resumo:
The Queensland Building Services Authority (QBSA) regulates the construction industry in Queensland, Australia, with licensing requirements creating differential financial reporting obligations, depending on firm size. Economic theories of regulation and behaviour provide a framework for investigating effects of the financial constraints and financial reporting requirements imposed by QBSA licensing. Data are analysed for all small and medium construction entities operating in Queensland between 2001 and 2006. Findings suggesting that construction licensees are categorizing themselves as smaller to avoid the more onerous and costly financial reporting of higher licensee categories are consistent with US findings from the 2002 Sarbanes-Oxley (SOX) regulation which created incentives for small firms to stay small to avoid the costs of compliance with more onerous financial reporting requirements. Such behaviour can have the undesirable economic consequences of adversely affecting employment, investment, wealth creation and financial stability. Insights and implications from the analysed QBSA processes are important for future policy reform and design, and useful to be considered where similar regulatory approaches are planned.
Resumo:
Boracite is a magnesium borate mineral with formula: Mg3B7O13Cl and occurs as blue green, colorless, gray, yellow to white crystals in the orthorhombic – pyramidal crystal system. An intense Raman band at 1009 cm−1 was assigned to the BO stretching vibration of the B7O13 units. Raman bands at 1121, 1136, 1143 cm−1 are attributed to the in-plane bending vibrations of trigonal boron. Four sharp Raman bands observed at 415, 494, 621 and 671 cm−1 are simply defined as trigonal and tetrahedral borate bending modes. The Raman spectrum clearly shows intense Raman bands at 3405 and 3494 cm−1, thus indicating that some Cl anions have been replaced with OH units. The molecular structure of a natural boracite has been assessed by using vibrational spectroscopy.
Resumo:
Balcony acoustic treatments can mitigate the effects of community road traffic noise. To further investigate, a theoretical study into the effects of balcony acoustic treatment combinations on speech interference and transmission is conducted for various street geometries. Nine different balcony types are investigated using a combined specular and diffuse reflection computer model. Diffusion in the model is calculated using the radiosity technique. The balcony types include a standard balcony with or without a ceiling and with various combinations of parapet, ceiling absorption and ceiling shield. A total of 70 balcony and street geometrical configurations are analyzed with each balcony type, resulting in 630 scenarios. In each scenario the reverberation time, speech interference level (SIL) and speech transmission index (STI) are calculated. These indicators are compared to determine trends based on the effects of propagation path, inclusion of opposite buildings and difference with a reference position outside the balcony. The results demonstrate trends in SIL and STI with different balcony types. It is found that an acoustically treated balcony reduces speech interference. A parapet provides the largest improvement, followed by absorption on the ceiling. The largest reductions in speech interference arise when a combination of balcony acoustic treatments are applied.
Resumo:
In this paper two-dimensional (2-D) numerical investigation of flow past four square cylinders in an in-line square configuration are performed using the lattice Boltzmann method. The gap spacing g=s/d is set at 1, 3 and 6 and Reynolds number ranging from Re=60 to 175. We observed four distinct wake patterns: (i) a steady wake pattern (Re=60 and g=1) (ii) a stable shielding wake pattern (80≤Re≤175 and g=1) (iii) a wiggling shielding wake pattern (60≤Re≤175 and g=3) (iv) a vortex shedding wake pattern (60≤Re≤175 and g=6) At g=1, the Reynolds number is observed to have a strong effect on the wake patterns. It is also found that at g=1, the secondary cylinder interaction frequency significantly contributes for drag and lift coefficients signal. It is found that the primary vortex shedding frequency dominates the flow and the role of secondary cylinder interaction frequency almost vanish at g=6. It is observed that the jet between the gaps strongly influenced the wake interaction for different gap spacing and Reynolds number combination. To fully understand the wake transformations the details vorticity contour visualization, power spectra of lift coefficient signal and time signal analysis of drag and lift coefficients also presented in this paper.
Resumo:
Background: Findings from the phase 3 First-Line ErbituX in lung cancer (FLEX) study showed that the addition of cetuximab to first-line chemotherapy significantly improved overall survival compared with chemotherapy alone (hazard ratio [HR] 0·871, 95% CI 0·762-0·996; p=0·044) in patients with advanced non-small-cell lung cancer (NSCLC). To define patients benefiting most from cetuximab, we studied the association of tumour EGFR expression level with clinical outcome in FLEX study patients. Methods: We used prospectively collected tumour EGFR expression data to generate an immunohistochemistry score for FLEX study patients on a continuous scale of 0-300. We used response data to select an outcome-based discriminatory threshold immunohistochemistry score for EGFR expression of 200. Treatment outcome was analysed in patients with low (immunohistochemistry score <200) and high (≥200) tumour EGFR expression. The primary endpoint in the FLEX study was overall survival. We analysed patients from the FLEX intention-to-treat (ITT) population. The FLEX study is registered with ClinicalTrials.gov, number NCT00148798. Findings: Tumour EGFR immunohistochemistry data were available for 1121 of 1125 (99·6%) patients from the FLEX study ITT population. High EGFR expression was scored for 345 (31%) evaluable patients and low for 776 (69%) patients. For patients in the high EGFR expression group, overall survival was longer in the chemotherapy plus cetuximab group than in the chemotherapy alone group (median 12·0 months [95% CI 10·2-15·2] vs 9·6 months [7·6-10·6]; HR 0·73, 0·58-0·93; p=0·011), with no meaningful increase in side-effects. We recorded no corresponding survival benefit for patients in the low EGFR expression group (median 9·8 months [8·9-12·2] vs 10·3 months [9·2-11·5]; HR 0·99, 0·84-1·16; p=0·88). A treatment interaction test assessing the difference in the HRs for overall survival between the EGFR expression groups suggested a predictive value for EGFR expression (p=0·044). Interpretation: High EGFR expression is a tumour biomarker that can predict survival benefit from the addition of cetuximab to first-line chemotherapy in patients with advanced NSCLC. Assessment of EGFR expression could offer a personalised treatment approach in this setting. Funding: Merck KGaA. © 2012 Elsevier Ltd.
Resumo:
Drosophila melanogaster, along with all insects and the vertebrates, lacks an RdRp gene. We created transgenic strains of Drosophila melanogaster in which the rrf-1 or ego-1 RdRp genes from C. elegans were placed under the control of the yeast GAL4 upstream activation sequence. Activation of the gene was performed by crossing these lines to flies carrying the GAL4 transgene under the control of various Drosophila enhancers. RT-PCR confirmed the successful expression of each RdRp gene. The resulting phenotypes indicated that introduction of the RdRp genes had no effect on D. melanogaster morphological development. © 2010 Springer Science+Business Media B.V.
Resumo:
Many species of bat use ultrasonic frequency modulated (FM) pulses to measure the distance to objects by timing the emission and reception of each pulse. Echolocation is mainly used in flight. Since the flight speed of bats often exceeds 1% of the speed of sound, Doppler effects will lead to compression of the time between emission and reception as well as an elevation of the echo frequencies, resulting in a distortion of the perceived range. This paper describes the consequences of these Doppler effects on the ranging performance of bats using different pulse designs. The consequences of Doppler effects on ranging performance described in this paper assume bats to have a very accurate ranging resolution, which is feasible with a filterbank receiver. By modeling two receiver types, it was first established that the effects of Doppler compression are virtually independent of the receiver type. Then, used a cross-correlation model was used to investigate the effect of flight speed on Doppler tolerance and range–Doppler coupling separately. This paper further shows how pulse duration, bandwidth, function type, and harmonics influence Doppler tolerance and range–Doppler coupling. The influence of each signal parameter is illustrated using calls of several bat species. It is argued that range–Doppler coupling is a significant source of error in bat echolocation, and various strategies bats could employ to deal with this problem, including the use of range rate information are discussed.